
Common Desktop Environment 1.0

ToolTalk Messaging Overview

This edition of the Common Desktop Environment Advanced User’s and System
Administrator’s Guide applies to AIX Version 4.2, and to all subsequent releases of
these products until otherwise indicated in new releases or technical newsletters.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT.

The code and documentation for the DtComboBox and DtSpinBox widgets were
contributed by Interleaf, Inc. Copyright 1993, Interleaf, Inc.

Copyright  1993, 1994, 1995 Hewlett-Packard Company
Copyright  1993, 1994, 1995 International Business Machines Corp.
Copyright  1993, 1994, 1995 Sun Microsystems, Inc.
Copyright  1993, 1994, 1995 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright
and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or related documentation may be reproduced in any form by any
means without prior written authorization.

All rights reserved. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by
the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
AR 52.227-19.

iiiContents

1. Architectural Overview 1.
Conceptual Overview 1.

2. Introducing the ToolTalk Service 1.
What Kind of Work Problems Can the ToolTalk Service
Solve? 1.
How Applications Use ToolTalk Messages 5.
ToolTalk Message Distribution 6.
Modifying Applications to Use the ToolTalk Service 7. .

3. How to Use ToolTalk Messaging 8.
Telling Your Application about ToolTalk Functionality 8
Before You Start Coding 8.
Preparing Your Application for Communication 11.

4. Using TTSnoop to Debug Messages and Patterns 15
About TTSnoop 15.
Where to Find TTSnoop 16.
Starting TTSnoop 16.
Composing and Sending Messages 17.
Composing and Registering Patterns 17.
Displaying Message Components 17.
Sending Pre–Created Messages 17.
Receiving Messages 17.
Stop Receiving Messages 17.

5. Using ToolTalk Tracing 17.
Accessing ToolTalk Tracing 18.
Controlling Tracing 18.
Tracing Message Traffic in a ToolTalk Session 18.
Tracing ToolTalk Calls and Messages through the
Server 20.
Settings for ToolTalk Tracing 24.

Appendix A. The Messaging Toolkit 25.
General Description of the ToolTalk Messaging Toolkit 25
Toolkit Conventions 27.
Using the Messaging Toolkit When Writing
Applications 28.
The ToolTalk Messaging Toolkit 28.
ttdt_close 28.
ttdt_file_event 28.
ttdt_file_join 29.
ttdt_file_notice 31.
ttdt_file_quit 32.
ttdt_file_request 33.
ttdt_Get_Modified 34.
ttdt_message_accept 34.

iv CDE ToolTalk Messaging Overview

ttdt_open 37.
ttdt_Revert 37.
ttdt_Save 38.
ttdt_sender_imprint_on 39.
ttdt_session_join 40.
ttdt_session_quit 43.
ttdt_subcontract_manage 43.
ttmedia_Deposit 44.
ttmedia_load 45.
ttmedia_load_reply 47.
ttmedia_ptype_declare 48.
tttk_block_while 49.
tttk_message_abandon 50.
tttk_message_create 50.
tttk_message_destroy 51.
tttk_message_fail 51.
tttk_message_receive 51.
tttk_message_reject 52.
tttk_op_string 52.
tttk_Xt_input_handler 52.

Appendix B. The CoEd Demonstartion Program 52. . .
The CoEd Ptype File 53.
The CoEd.C File 54.
The Coeditor.C File 58.

Appendix C. New ToolTalk Functions 81.
tt_error 81.
tt_file_netfile 81.
tt_host_file_netfile 81.
tt_host_netfile_file 82.
tt_message_print 83.
tt_netfile_file 83.
tt_pattern_print 84.

Appendix D. Examples 84.
Example Ttdt_contract_cb 84.
Example Ttdt_file_cb 87.
Example Ttmedia_load_msg_cb 89.
Example Ttmedia_load_pat_cb 89.
Example Ptype Signature for Ttmedia_ptype_declare
Function 91.
Example for Xt Input Handler Function 93.

Index .

iPreface

Preface
This book describes the Common Desktop Environment (CDE) components, commands,
and error messages of the ToolTalk service.

Note: In–depth information about the functionality of the ToolTalk service in general is

beyond the scope of this book. That is, CDE ToolTalk Messaging Overview does

not describe ToolTalk APIs or commands, or other ToolTalk functionality not
specifically related to this release of the ToolTalk service for the Common Desktop
Environment. See the CDE: ToolTalk Reference Manual and the CDE: ToolTalk

User’s Guide for this information.

Who Should Use This Book
This manual is for developers who create or maintain applications that use the ToolTalk
service to inter–operate with other applications in Common Desktop Environment. This
manual assumes familiarity with the ToolTalk service and its functionality, UNIX operating
system commands, system administrator commands, and system terminology.

How This Book Is Organized
This book is organized as follows:

“Introducing the ToolTalk Service” describes how the ToolTalk service works and how it
uses information that your application supplies to deliver messages; how applications use
the ToolTalk service; and application and ToolTalk components.

 “How to Use ToolTalk Messaging” contains the information you need to write an
application using the ToolTalk service in the Common Desktop Environment, including the
kinds of ToolTalk toolkit messages that need to be included in your application in order for it
to inter–operate with other ToolTalk–aware Common Desktop Environment–compliant
applications.

“Using TTSnoop to Debug Messages and Patterns” describes how to create and send
custom–constructed ToolTalk messages, and also how to selectively monitor any or all
ToolTalk messages.

“Using ToolTalk Tracing” describes how a ToolTalk pattern matches and delivers every
message ttsession sees.

“The Messaging Toolkit” describes some of the application program interface (API
functions) that are a part of the messaging toolkit.

“The CoEd Demonstration Program” gives the ToolTalk–related portions of the ptype,
header, and .c files of the ToolTalk demo program CoEd.

“New ToolTalk Functions” describes the ToolTalk functions that map filenames between
local and canonical paths.

Related Books and Other Documentation
CDE ToolTalk Messaging Overview does not provide in–depth information about ToolTalk
and its functionality. In addition to the ToolTalk product base documentation (that is, ToolTalk
User’s Guide and the ToolTalk Reference Manual), the following related ToolTalk

ii CDE ToolTalk Messaging Overview

documentation provide in–depth information about the ToolTalk functionality that is beyond
the scope of this book:

• The ToolTalk Service – An Inter–Operability Solution
(Published by SunSoft Press/PTR Prentice Hall, ISBN 013–088717–X)

This book describes ToolTalk and its functionality in depth, and is appropriate for all
platforms to which ToolTalk has been ported. It is available at your local bookstore or
directly from PTR Prentice Hall.

• ToolTalk and Open Protocols
by Astrid M. Julienne and Brian Holtz
(Published by SunSoft Press/PTR Prentice Hall, ISBN 013–031055–7)

This book describes how to create and develop open protocols for applications that use a
messaging service to communicate with other applications. The general principles
described in this book provide an application with the flexibility required for users to
easily inter–change tools. It is available at your local bookstore or directly from PTR
Prentice Hall.

• ToolTalk Message Sets

• ToolTalk Desktop Services Message Set

These conventions apply to any tools in a POSIX or X11 environment. In addition to
standard messages for these environments, the Desktop conventions define data types
and error codes that apply to all of the ToolTalk inter–client conventions.

• ToolTalk Document and Media Exchange Message Set

Allows a tool to be a container for arbitrary media, or to be a media player/editor that can
be driven from such a container.

• CASE Inter–Operability Message Set

An open specification defining abstract, framework–neutral message interfaces for CASE
set–up by Sunsoft, DEC, and SGI. This work has been merged with HP’s CASE
Communique work, which defined message interfaces for HP’s SoftBench Broadcast
Message Server framework, and was submitted as a joint draft to ANSI X3H6. As of this
writing, ANSI X3H6 is still reviewing the joint submission draft. More information on the
draft X3H6 standard can be retrieved from ftp.netcom.com, in /pub/X3H6; or you can
contact:

X3 Secretariat
Computer and Business Equipment Manufactures Assoc
1250 Eye St NW
Washington DC 20005–3922

Telephone: (202) 737–8888 (press ‘1’ twice)
Fax: (202) 638–4922 or (202) 628–2829

ToolTalk News Group
The ToolTalk news group is:

alt.soft–sys.tooltalk

1CDE ToolTalk Messaging Overview

Introducing the ToolTalk Service
As computer users increasingly demand that independently developed applications work
together, inter–operability is becoming an important theme for software developers. By
cooperatively using each other’s facilities, inter–operating applications offer users
capabilities that would be difficult to provide in a single application. The ToolTalk service is
designed to facilitate the development of inter–operating applications that serve individuals
and work groups.

The ToolTalk service enables independent applications to communicate with each other
without having direct knowledge of each other. Applications create and send ToolTalk
messages to communicate with each other. The ToolTalk service receives these messages,
determines the recipients, and then delivers the messages to the appropriate applications,
as shown in Figure .

Application
A

Application
B

Application
C

Application
D

The ToolTalk Service

What Kind of Work Problems Can the ToolTalk Service Solve?
This section describes some of the inter–operability problems the ToolTalk service is
designed to solve. The ToolTalk service is the appropriate technology to use if your
application needs:

• Tool inter–changeability

• Control integration

• Network–transparent events that are not owned by any well–known server (for example,
an X server) and that do not have any predictable set of listeners

• Automatic tool invocation

• A widely–available distributed object system

• Persistent objects

Of course, there are some inter–operability problems for which the ToolTalk service may not
be the appropriate technology to use. However, when your application needs to solve both
sorts of problems (that is, a combination of those inter–operability problems for which the
ToolTalk service is designed to solve and those problems for which it is not designed), you
can use the ToolTalk service in combination with other technologies.

2 CDE ToolTalk Messaging Overview

Tool Inter–changeability
Use the ToolTalk service when you want plug–and–play capability. The term plug–and–play
means that any tool can be replaced by any other tool that follows the same protocol. That
is, any tool that follows a given ToolTalk protocol can be placed (plugged) into your
computing environment and perform (play) those functions indicated by the protocol. Tools
can be mixed and matched, without modification and without having any specific built–in
knowledge of each other.

Control Integration
Use the ToolTalk service when your application requires control integration. The term control
integration indicates a group of tools working together toward a common end without direct
user intervention. The ToolTalk service enables control integration through its easy and
flexible facilities for issuing arbitrary requests, either to specific tool instances or to
anonymous service providers.

Network–Transparent Events
Use the ToolTalk service when your application needs to generate or receive
network–transparent events. To be useful, traditional event mechanisms (such as signals
and window–system events) require special circumstances; for example, you must know a
process or window ID. The ToolTalk service allows events to be expressed naturally: in
terms of the file to which the event refers, or the group of processes on the network to which
the event is applicable. The ToolTalk service delivers events (called notices) to any
interested process anywhere on the network. ToolTalk notices are a flexible and easy way to
provide extensibility for your system.

Automatic Tool Invocation
Use the ToolTalk service when your application needs network–transparent automatic
invocation. The ToolTalk service lets you describe the messages that, when sent from any
location on the network, should cause your tool to be invoked. The ToolTalk auto–start
facility is easier to use and less host–specific than the conventional inetd(1) facility.

Distributed–Object System
Use ToolTalk when you need to build your application on a distributed–object system that is
available across a wide variety of platforms. ToolTalk’s object system can be used by any
application on all the popular UNIX platforms, regardless of whether the application

• Is single– or multi–threaded

• Has a command–line or graphical user interface

• Uses its own event loop, or that of a window–system toolkit

Note: Programs coded to the ToolTalk object–oriented messaging interface are not
portable to CORBA–compliant systems without source changes.

Persistent Objects
Use the ToolTalk service when your application needs to place objects unobtrusively in the
UNIX file system.

Scenarios Illustrating How the ToolTalk Service Helps Solve Work Problems
The scenarios in this section illustrate how the ToolTalk service helps users solve their work
problems. The message protocols used in these scenarios are hypothetical.

3CDE ToolTalk Messaging Overview

Using the ToolTalk Desktop Services Message Set
The ToolTalk Desktop Services Message Set allows an application to integrate and control
other applications without user intervention. This section presents two scenarios (“The
Smart Desktop” and “Integrated Toolsets”) that show how the Desktop Services Message
Set might be implemented.

The Smart Desktop
Note: The scenario in this section is intended to illustrate how the ToolTalk service can be

used in an application–level program that interprets user requests; it is not intended
to illustrate how the Common Desktop Environment product implements the ToolTalk
service to interpret user requests.

A common user requirement for a graphic user interface (GUI) front–end is the ability to
have data files be aware (or “know”) of their applications. To do this, an application–level
program is needed to interpret the user’s requests. Examples of application–level programs
(known as smart desktops) are the Apple Macintosh finder, Microsoft Windows File
Manager, and the Common Desktop Desktop File Manager. The key common requirements
for smart desktops are:

1. Takes a file

2. Determines its application

3. Invokes the application

The ToolTalk Service provides additional flexibility by allowing classes of tools to edit a
specific data type. The following scenario illustrates how the Desktop Services Message Set
might be implemented as a smart desktop transparent to the end–user.

1. Diane double–clicks on the File Manager icon.

• The File Manager opens and displays the files in Diane’s current directory.

2. Diane double–clicks on an icon for a data file.

a. The File Manager requests that the file represented by the icon be displayed. The File
Manager encodes the file type in the display message.

b. The ToolTalk session manager matches the pattern in the display message to a
registered application (in this case, the Icon Editor), and finds an instance of the
application running on Diane’s desktop.

Note: If the ToolTalk session manager does not find a running instance of the application, it
checks the statically–defined process types (ptypes) and starts an application that
best matches the pattern in the message. If none of the ptypes matches, the session
manager returns failure to the File Manager application.

c. The Icon Editor accepts the display message, de–iconifies itself, and raises itself to
the top of the display.

3. Diane manually edits the file.

Integrated Toolsets
Another significant application for which the Desktop Services Message Set can be
implemented is integrated toolsets. These environments can be applied in vertical
applications (such as a CASE developer toolset) or in horizontal environments (such as
compound documents). Common to both of these applications is the premise that the overall
solution is built from specialized applications designed to perform one particular task well.
Examples of integrated toolset applications are text editors, drawing packages, video or
audio display tools, compiler front–ends, and debuggers. The integrated toolset environment
requires applications to interact by calling on each other to handle user requests. For

4 CDE ToolTalk Messaging Overview

example, to display video, an editor calls a video display program; or to check a block of
completed code, an editor calls a compiler.

The following scenario shows how the Desktop Services Message Set might be
implemented as an integrated toolset:

1. Bruce is working on a compound document using his favorite editor.

He decides to change the some of the source code text.

2. Bruce double–clicks on the source code text.

a. The Document Editor first determines the text represents source code and then
determines which file contains the source code.

b. The Document Editor sends an edit message request, using the file name as a
parameter for the message.

c. The ToolTalk session manager matches the pattern in the edit message to a
registered application (in this case, the Source Code Editor), and finds an instance of
the application running on Bruce’s desktop.

Note: If the ToolTalk session manager does not find a running instance of the application, it
checks the statically–defined ptypes and starts an application that best matches the
pattern in the message. If none of the ptypes matches, the session manager returns
failure to the Document Editor application.

d. The Source Code Editor accepts the edit message request.

e. The Source Code Editor determines that the source code file is under configuration
control, and sends a message to check out the file.

f. The Source Code Control application accepts the message and creates a read–write
copy of the requested file. It then passes the name of the file back to the Source Code
Editor.

g. The Source Code Editor opens a window that contains the source file.

3. Bruce edits the source code text.

Using the ToolTalk Document and Media Exchange Message Set
The ToolTalk Document and Media Exchange Message Set is very flexible and robust. This
section illustrates three uses of the ToolTalk Document and Media Exchange Message Set:

• Integrating multimedia into an authoring application

• Adding multimedia extensions to an existing application

• Extending the cut–and–paste facility of X with a media–translation facility

Integrating Multimedia Functionality
Integrating multimedia functionality into an application allows end–users of the application to
embed various media types in their documents.

Typically, an icon that represents the media object is embedded in the document. Upon
selection of an embedded object, the ToolTalk service automatically invokes an appropriate
external media application and the object is played as illustrated in the following scenario.

1. Daniel opens a document that contains multimedia objects.

2. The window shows the document with several icons representing various media types
(such as sound, video, and graphics).

3. Daniel double–clicks on the sound icon.

A sound application (called a player) is launched and the embedded recording is played.

5CDE ToolTalk Messaging Overview

4. To edit the recording, Daniel clicks once on the icon to select it and uses the third mouse
button to display an Edit menu.

An editing application is launched, and Daniel edits the media object.

Adding Multimedia Extensions to Existing Applications
The ToolTalk Document and Media Exchange Message Set also allows an application to use
other multimedia applications to extend its features or capabilities. For example, a Calendar
Manager can be extended to use the Audio Tool to play a sound file as a reminder of an
appointment, as illustrated in the following scenario:

1. Shelby opens her Calendar Manager and sets an appointment.

2. Shelby clicks on an Audio Response button, which causes the Audio Tool to start.

3. Shelby records her message; for example, “Bring the report.”

When Shelby’s appointment reminder is executed, the Calendar Manager will start the Audio
Tool and play Shelby’s recorded reminder.

Extending the X Cut–and–Paste Facility
The ToolTalk Document and Media Exchange Message Set can support an extensible,
open–ended translation facility. The following scenario illustrates how an extensible
multimedia cut and paste facility could work:

1. Maria opens two documents that are different media types.

2. Maria selects a portion of Document A and cuts the portion using the standard
X–windowing cut facility.

3. Maria then pastes the cut portion into Document B.

a. Document B negotiates the transfer of the cut data with Document A.

b. If Document B does not understand any of the types offered by Document A, it
requests that Document A sends it a tagged media type. Document B uses the tagged
media type to broadcast a ToolTalk message requesting a translation of the media
type to a media type it understands.

c. A registered translation utility accepts the request and returns the translated version
of the media type to Document B.

d. The paste of the translated data into Document B is performed.

How Applications Use ToolTalk Messages
Applications create, send, and receive ToolTalk messages to communicate with other
applications. Senders create, fill in, and send a message; the ToolTalk service determines
the recipients and delivers the message to the recipients. Recipients retrieve messages,
examine the information in the message, and then either discard the message or perform an
operation and reply with the results.

Sending ToolTalk Messages
ToolTalk messages are simple structures that contain fields for address, subject, and
delivery information. To send a ToolTalk message, an application obtains an empty
message, fills in the message attributes, and sends the message. The sending application
needs to provide the following information:

• Is the message a notice or a request (that is, should the recipient respond to the
message)?

• What interest does the recipient share with the sender? (For example, is the recipient
running in a specific user session or interested in a specific file?)

6 CDE ToolTalk Messaging Overview

To narrow the focus of the message delivery, the sending application can provide more
information in the message.

Message Patterns
An important ToolTalk feature is that senders need to know little about the recipients
because applications that want to receive messages explicitly state what message they want
to receive. This information is registered with the ToolTalk service in the form of message
patterns.

Applications can provide message patterns to the ToolTalk service at installation time and
while the application is running. Message patterns are created similarly to the way a
message is created; both use the same type of information. For each type of message an
application wants to receive, it obtains an empty message pattern, fills in the attributes, and
registers the pattern with the ToolTalk service. These message patterns usually match the
message protocols that applications have agreed to use. Applications can add more
patterns for individual use.

When the ToolTalk service receives a message from a sending application, it compares the
information in the message to the register patterns. Once matches have been found, the
ToolTalk service delivers copies of the message to all recipients.

For each pattern that describes a message an application wants to receive, the application
declares whether it can handle or observe the message. Although many applications can
observe a message, only one application can handle the message to ensure that a
requested operation is performed only once. If the ToolTalk service cannot find a handler for
a request, it returns the message to the sending application indicating that delivery failed.

Receiving ToolTalk Messages
When the ToolTalk service determines that a message needs to be delivered to a specific
process, it creates a copy of the message and notifies the process that a message is
waiting. If a receiving application is not running, the ToolTalk service looks for instructions
(provided by the application at installation time) on how to start the application.

The process retrieves the message and examines its contents.

• If the message contains a notice that an operation has been performed, the process
reads the information and then discards the message.

• If the message contains a request to perform an operation, the process performs the
operation and returns the result of the operation in a reply to the original message. Once
the reply has been sent, the process discards the original message.

ToolTalk Message Distribution
The ToolTalk service provides two methods of addressing messages: process–oriented
messages and object–oriented messages.

Process–Oriented Messages
Process–oriented messages are addressed to processes. Applications that create a
process–oriented message address the message to either a specific process or to a
particular type of process. Process–oriented messages are a good way for existing
applications to begin communication with other applications. Modifications to support
process–oriented messages are straightforward and usually take a short time to implement.

Object–Oriented Messages
Object–oriented messages are addressed to objects managed by applications. Applications
that create an object–oriented message address the message to either a specific object or

7CDE ToolTalk Messaging Overview

to a particular type of object. Object–oriented messages are particularly useful for
applications that currently use objects or that are to be designed around objects. If an
existing application is not object–oriented, the ToolTalk service allows applications to identify
portions of application data as objects so that applications can begin to communicate about
these objects.

Note: Programs coded to the ToolTalk object–oriented messaging interface are not
portable to CORBA–compliant systems without source changes.

Determining Message Delivery
To determine which groups receive messages, you scope your messages. Scoping limits the
delivery of messages to a particular session or file.

Sessions
A session is a group of processes that have an instance of the ToolTalk message server in
common. When a process opens communication with the ToolTalk service, a default session
is located (or created, if a session does not already exist) and a process identifier (procid) is
assigned to the process. Default sessions are located either through an environment
variable (called “process tree sessions”) or through the X display (called “X sessions”).

The concept of a session is important in the delivery of messages. Senders can scope a
message to a session and the ToolTalk service will deliver it to all processes that have
message patterns that reference the current session. To update message patterns with the
current session identifier (sessid), applications join the session.

Files
A container for data that is of interest to applications is called a file in this book.

The concept of a file is important in the delivery of messages. Senders can scope a
message to a file and the ToolTalk service will deliver it to all processes that have message
patterns that reference the file without regard to the process’s default session. To update
message patterns with the current file path name, applications join the file.

You can also scope a message to a file within a session. The ToolTalk service will deliver the
message to all processes that reference both the file and session in their message patterns.

Note: The file scoping feature is restricted to NFS and UFS file systems.

Modifying Applications to Use the ToolTalk Service
Before you modify your application to use the ToolTalk service, you must define (or locate) a
ToolTalk message protocol: a set of ToolTalk messages that describe operations applications
agree to perform. The message protocol specification includes the set of messages and how
applications should behave when they receive the messages.

To use the ToolTalk service, an application calls ToolTalk functions from the ToolTalk API.
The ToolTalk API provides functions to register with the ToolTalk service, to create message
patterns, to send messages, to receive messages, to examine message information, and so
on. To modify your application to use the ToolTalk service, you must first include the ToolTalk
API header file in your program. You also need to modify your application to:

• Initialize the ToolTalk service and join a session

• Register message patterns with the ToolTalk service

• Send and receive messages

• Unregister message patterns and leave your ToolTalk session

8 CDE ToolTalk Messaging Overview

How to Use ToolTalk Messaging
Note: The code examples shown in this section are taken from a ToolTalk demo program

called CoEd. See “The CoEd Demonstration Program” for a listing of the source
code showing how ToolTalk–related code is included in the header and .c files for
this program.

Telling Your Application about ToolTalk Functionality
Before your application can utilize the inter–operability functionality provided by the ToolTalk
service and the Messaging Toolkit, it needs to know where the ToolTalk libraries and toolkit
reside.

Using the Messaging Toolkit and Including ToolTalk Commands
To use the ToolTalk service, an application calls ToolTalk functions from the ToolTalk API.
The Messaging Toolkit provides functions such as functions to register with the ToolTalk
service, to create message patterns, to send messages, to receive messages, and to
examine message information. To modify your application to use the ToolTalk service and
toolkit, you must include the appropriate header files in your application’s .h file.

#include <Tt/tt_c.h> // ToolTalk Header File

#include <Tt/tttk.h> // Messaging Toolkit Header File

Your application also needs to know about the new ToolTalk commands that are in its .c file.
Place this information in your application’s .h file, too.

The following Code Example shows how the header file information is included in the
CoEditor.h file.

#ifndef CoEditor_h

#define CoEditor_h

#include <X11/Intrinsic.h>

#include <Tt/tt_c.h> // ToolTalk Header

#include <Tt/tttk.h> // Messaging Toolkit Header

Using the ToolTalk Libraries
You need to change the Imakefile of your application so that it uses the ToolTalk libraries. To
do this, add the –ltt option as follows:

LOCAL_LIBRARIES = –ltt $(XAWLIB) $(XMULIB) $(XTOOLLIB) $(XLIB)

Before You Start Coding
Before you can incorporate the Messaging Toolkit functionality into your application, you
need to determine the way that your tool will work with other tools. There are several basic
questions you need to ask:

1. How will these tools work together?

2. What kinds of operations can these tools perform?

3. What kinds of operations can these tools ask other tools to perform?

4. What events will these tools generate which may interest other tools? (What types of
messages will these tools want to send?)

9CDE ToolTalk Messaging Overview

5. What events generated by other tools will be of interest to these tools? (What types of
messages will these tools want to receive?)

To best answer these questions, you need to understand the difference between events and
operations, and how the ToolTalk service handles messages regarding each of these.

What Is the Difference Between an Event and an Operation?
An event is an announcement that something has happened. An event is simply a news
bulletin. The sending process has no formal expectations as to whether any other process
will hear about the event, or whether an action is taken as a consequence of the event.
When a process uses the ToolTalk service to inform interested processes that an event has
occurred, it sends a notice. Since the sending process does not expect a reply, an event
cannot fail.

An operation is an inquiry or an action. The requesting process makes an inquiry or
requests that an operation be performed. The requesting process expects a result to be
returned and needs to be informed of the status of the inquiry or action. When a process
uses the ToolTalk service to ask another tool to perform an operation, it sends a request.
The ToolTalk service delivers the request to interested processes and informs the sending
process of the status of the request.

Sending Notices
When your application sends a ToolTalk notice, it will not receive a reply or be informed
about whether or not any tool pays attention to the notice. It is important to make the notice
an impartial report of the event as it happens.

For example, if your tool sends the Desktop Services message Modified, it may expect
any listening tools to react in a given way. However, your tool should not care, and does not
need to be informed, about whether any or no other tool reacts to the message; it only wants
to report the event:

THE_USER_HAS_MADE_CHANGES_TO_THIS.

Sending Requests
When your application sends a ToolTalk request, it expects one tool to perform the indicated
operation, or to answer the inquiry, and return a reply message. For example, if your tool
sends the Desktop Services message Get_Modified, it should expect notification that
the message was delivered and the action performed. The ToolTalk service guarantees that
either a reply will be returned by the receiving process or the sender will be informed of the
request’s failure.

You can identify requests in three ways:

1. By identifying the operations requested by your tool that can fail.

2. By identifying the operations your tool can perform for other tools.

3. By identifying the operations your tool will want other tools to perform.

A good method to use to identify these operations is to develop a scenario that outlines the
order of events and operations that you expect your tool to perform and have performed.

Developing a Scenario
A scenario outlines the order of the events and operations that a tool will expect to perform
and have performed. For example, the following scenario outlines the events that the
ToolTalk demo program CoEd expects to perform and have performed:

1. User double–clicks on a document icon in the File Manager.

The file opens in the editor, which is started by the system if one is not already running.

10 CDE ToolTalk Messaging Overview

If another tool has modifications to the text pending for the document, User is asked
whether the other tool should save the text changes or revert to the last saved version of
the document.

2. User inserts text.

3. User saves the document.

If another tool has modifications pending for the document, User is asked whether to
modify the document.

4. User exits the editor.

If text has unsaved changes, User is asked whether to save or discard the changes
before quitting the file.

Once the scenario is done, you can answer your basic questions.

How Will the Tools Work Together?
• The File Manager will request that CoEd open a document for editing.

• Each instance of CoEd will notify other interested instances of changes it makes to the
state of the document.

What Kinds of OperationsDo the Tools Perform?
• Each instance of CoEd can answer questions about itself and its state, such as “What is

your status?”

• Each instance of CoEd has the capability of performing operations such as:

• Iconifying and de–iconifying

• Raising to front and lowering to back

• Editing a document

• Displaying a document

• Quitting

What Kinds of Operations Can the Tools Ask Other Tools to Perform?
• The File Manager must request that CoEd open a document for editing.

• An instance of CoEd can ask another instance of CoEd to save changes to the open
document.

• An instance of CoEd can ask another instance of CoEd to revert to the last saved version
of the open document.

What Events Will the Tools Generate that May Interest Other Tools?
• The document has been opened.

• The document has been modified.

• The document has been reverted to last saved version.

• The document has been saved.

• An instance of CoEd has been exited.

What Events Generated by Other Tools Will Be of Interest to This Tool?
• The document has been opened.

• The document has been modified.

11CDE ToolTalk Messaging Overview

• The document has been reverted to last saved version.

• The document has been saved.

• An instance of CoEd has been exited.

Preparing Your Application for Communication
The ToolTalk service provides you with a complete set of functions for application
integration. Using the functionality provided with the ToolTalk Messaging Toolkit, your
applications can be made to “speak” to other applications that are ToolTalk–compliant. This
section describes how to add the kinds of ToolTalk functions you need to include in your
application so that it can communicate with other ToolTalk–aware applications that follow the
same protocols.

Creating a Ptype File
The ToolTalk types mechanism is designed to help the ToolTalk service route messages.
When your tool declares a ptype, the message patterns listed in it are automatically
registered; the ToolTalk service then matches messages it receives to these registered
patterns. These static message patterns remain in effect until the tool closes communication
with the ToolTalk service.

The ToolTalk Types Database already has installed ptypes for tools bundled with this
release. You can extract a list of the installed ptypes from the ToolTalk Types Database, as
follows:

% tt_type_comp –d user|system|network –P

The names of the ptypes will be printed out in source format.

For all other tools (that is, tools that are not included in this release), you need to first create
a ptype file to define the ptype for your application, and then compile the ptype with the
ToolTalk type compiler, tt_type_comp . To define a ptype, you need to include the following
information in a file:

• A process–type identifier (ptid).

• An optional start string – The ToolTalk service will execute this command, if necessary, to
start a process running the program.

• Signatures – Describes the TT_PROCEDURE–addressed messages that the program
wants to receive. Messages to be observed are described separately from messages to
be handled.

To create a ptype file, you can use any text editor (such as vi , emacs , or dtpad). The
following Code Example shows a snippet from the ptype file for the CoEd application.

ptype DT_CoED { /* Process type identifier */
 start ”CoEd”; /* Start string */
 handle: /* Receiving process */
/*
* Display ISO_Latin_1
*/
sessionDisplay(in ISO_Latin_1 contents) => start opnum=1; /* Signature */
/* NOTE: A signature is divided
 * into two parts by the => as follows:
 * Part 1 specifies how the message is to be matched;
 * Part 2 specifies what is to be taken when
 * a match occurs.
 */
}

12 CDE ToolTalk Messaging Overview

After you have created the ptype file, you need to install the ptype. To do this, run the
ToolTalk type compiler. On the command line, type the following:

% tt_type_comp CoEd.ptype

where CoEd.ptype is the name of the CoED ptype file.

Testing for Existing Ptypes in Current Session
The ToolTalk service provides a simple function to test if a given ptype is already registered
in the current session.

// Test for existing ptype registered in current session

tt_ptype_exists(const char *ptid)

where ptid is the identifier of the session to test for registration.

Merging a Compiled Ptype File into a Currently Running ttsession
The ToolTalk service provides a function to merge a compiled ToolTalk type file into the
currently running ttsession:

// Merge new compiled ptypes into currently running ttsession

tt_session_types_load(current_session, compiled_types_file)

where current_session is the current default ToolTalk session and compiled_types_file is the
name of the compiled ToolTalk types file. This function adds new types and replaces existing
types of the same name; other existing types remain unchanged.

Tasks Every ToolTalk–aware Application Needs to Perform
There are a number of tasks every ToolTalk–aware application needs to perform, including:

• Initializing the toolkit

• Joining a ToolTalk session and registering patterns

• Adding the ToolTalk service to its event loop

This section provides examples of the ToolTalk code you need to include in your application
so that it can perform these tasks.

Note: The code snippets used in this section are taken from the CoEd.C file. This file
contains the general commands any application needs to perform that are not
specific to any particular application. See “The CoEd Demonstration Program” for the
detailed source code.

Initializing the Toolkit
Your application needs to initialize and register with the initial ToolTalk session. To do so, it
first needs to obtain a process identifier (procid). The following code snippet shows how to
obtain a procid and how to initialize the toolkit.

 // Obtain process identifier

 intmyTtFd

 // Initialize toolkit and create a TT communication endpoint

 char*myProcID = ttdt_open (&myTtFd, Toolname, ”SunSoft”, ”%|”, 1)

CAUTION:

Your application must call ttdt_open before any other calls are made; otherwise,

errors may occur.

13CDE ToolTalk Messaging Overview

Joining the ToolTalk Session and Registering Message Patterns
Before your application can receive messages, it must join a ToolTalk session and register
the message patterns that are to be matched.

// Join a ToolTalk session and register patterns and default
callbacks

sessPats = ttdt_session_join(0, 0, session_shell, this, 1);

}

Adding the ToolTalk Service to Event Loop
Your application also needs to add the ToolTalk service to its event loop.

// Process ToolTalk events for Xt Clients

 XtAppAddInput(myContext, myTtFd,
(XtPointer)XtInputReadMask, tttk_Xt_input_handler,

 myProcID);

Tasks ToolTalk–aware Editor Applications Need to Perform
In addition to the duties described in the section “Tasks Every ToolTalk–aware Application
Needs to Perform ,” ToolTalk–aware editor applications also need to perform other tasks,
including:

• Declaring a ptype

• Processing the start string message

• Passing a media callback

• Failing a message

• Replying when a request has been completed

This section provides examples of the ToolTalk code you need to include in your editor
application so that it can perform these additional tasks.

Note: The code snippets used in this section are taken from the CoEditor.C file. This file
contains specific commands for editor applications. See “The CoEd Demonstration
Program” for the detailed source code.

Writing a Media Load Pattern Callback
There is one step you need to perform before you code your editor application to include
any ToolTalk functions: you need to write a media load pattern callback routine. For
example,

Tt_message

CoEditor::loadISOLatin1_(

 Tt_message msg,

 void *pWidget,

 Ttttk_op op,

 Tt_status diagnosis,

 unsigned char *contents,

 int len,

 char *file,

 char *docname

14 CDE ToolTalk Messaging Overview

)

This callback is passed to the media load function at runtime.

Declaring a Ptype
Since type information is specified only once (when your application is installed), your
application needs to only declare its ptype each time it starts.

Passing Media Load Pattern Callbacks
The media load pattern callback routine you wrote previously is passed in at runtime. The
callbacks are registered when your application joins the session. When your tool agrees to
handle a request, a callback message is sent. A callback message is also sent if a file is
joined or if a message is failed.

// Join the session and register patterns and callbacks

sessPats = ttdt_session_join(0, 0, session_shell, this, 1);

// Accept responsibility to handle a request

_contractPats = ttdt_message_accept(msg, CoEditor::_contractCB_,
shell, this, 1, 1);

// Optional task: Join a file (Can be called recursively)

if (_filePats == 0) {_filePats = ttdt_file_join(_file,
TT_SCOPE_NONE, 1,

 CoEditor::_fileCB_, this);

}

// Fail a message

tttk_message_fail(msg, TT_DESKTOP_ENODATA, 0, 1);

Replying When Request Is Completed
After your application has completed the operation request, it must reply to the sending
application. The following message returns the edited contents of text to the sender.

// Reply to media load pattern callback

// with edited contents of text

ttmedia_load_reply(_contract, (unsigned char *)contents,

len, 1);

Optional Tasks ToolTalk–aware Editor Applications Can Perform
In addition to the tasks described in the section “Tasks ToolTalk–aware Editor Applications
Need to Perform,” editor applications can also perform other optional tasks such as tasks
that use desktop file interfaces to coordinate with other editors. This section provides
examples of some of the ToolTalk code you need to include in your editor application so that
it can perform these optional tasks.

Note: The code snippets used in this section are taken from the CoEditor.C file. This file
contains specific commands for editor applications. See “The CoEd Demonstration
Program” for the detailed source code.

Requesting Modify, Revert, or Save Operations
The following code snippet asks a file whether it has any changes pending:

// Does the file have any changes pending?

_modifiedByOther = ttdt_Get_Modified(_contract, _file, TT_BOTH,

15CDE ToolTalk Messaging Overview

 10 * timeOutFactor);

The following code snippet reverts a file to its last version:

// Revert file to last version

status = ttdt_Revert(_contract, _file, TT_BOTH,

 10 * timeOutFactor);

The following code snippet saves pending changes to a file:

// Save pending changes

status = ttdt_Save(_contract, _file, TT_BOTH,

 10 * timeOutFactor);

Notifying When a File Is Modified, Reverted, or Saved
The following code snippet announces to interested tools that your application has changes
pending for the file:

// File has been modified

ttdt_file_event(_contract, TTDT_MODIFIED, _filePats, 1);

The following code snippet announces to interested tools that your application has reverted
the file to its last saved version:

// File has been reverted to last version

ttdt_file_event(_contract, TTDT_REVERTED, _filePats, 1);

The following code snippet announces to interested tools that your application has saved its
pending changes for the file.

// File has been saved

ttdt_file_event(_contract, TTDT_SAVED, _filePats, 1);

Quitting a File
The following code snippet unregisters interest in ToolTalk events about a file and destroys
the patterns.

// Unregister interest in ToolTalk events and destroy patterns

status = ttdt_file_quit(_filePats, 1);

_filePats = 0;

Using TTSnoop to Debug Messages and Patterns
TTSnoop is a tool provided to create and send custom–constructed ToolTalk messages. You
can also use TTSnoop as a tool to selectively monitor any or all ToolTalk messages.

About TTSnoop
TTSnoop is a useful interactive tool that you can use to become familiar with TookTalk
concepts and API calls as well as to perform demonstrations. In addition, TTSnoop is a
valuable debugging tool when you are developing applications.

You can use TTSnoop to monitor for messages that match more than one pattern. When a
matched message is displayed, the name of the pattern that matched the entry can also be
displayed.

16 CDE ToolTalk Messaging Overview

You can add, edit, or delete messages and patterns to scrollable lists. TTSnoop allows the
definitions of multiple patterns and messages to be saved and loaded from files. You can
also define, save, and reload patterns and messages particular to a category of applications
(for example, DeskSet tools) as well as associate messages and patterns with a
user–defined name.

Where to Find TTSnoop
The TTSnoop program resides in the directory /usr/dt/bin/ttsnoop.

Starting TTSnoop
To start the program, enter the following command on the command line:

ttsnoop [–t]

The –t option displays the ToolTalk API calls that are being used to construct a particular
pattern or message. The following table describes the buttons that are displayed when
TTSnoop starts.

 TTSnoop Buttons

Button Description

Start Click this button to activate message reception. TTSnoop will
display any incoming messages that match the patterns you
register.

Stop Click this button to stop receiving messages.

Clear Click this button to clear the window.

About TTSnoop Click this button to obtain general help for TTSnoop.

Display Click this button to display a panel of checkboxes to highlight
specific ToolTalk message components on the TTSnoop display
subwindow.

Messages Click this button to display a panel that enables you to create,
store, and send ToolTalk messages.

Patterns Click this button to display a panel that enables you to compose
and register ToolTalk patterns.

Send Messages Click this button to send messages that were stored using the
Messages display.

Note: To obtain help for individual buttons and settings, place the mouse over the button or
setting and click the F1 key or Help key on your keyboard.

17CDE ToolTalk Messaging Overview

Composing and Sending Messages
When you click the Messages button on the main display window, a display panel containing
the choices shown in the following table is displayed.

 Message Button Display Window Options

Button Description

Add Message Click this button to store the current message settings. Once the
messages are stored, you can recall and send these messages
using the Send Message button on the main display window.

Edit Contexts Click this button to add, change, and delete send message
contexts. The display window displayed allows you to edit
contexts to be sent with your messages.

Send Message Click this button to send the newly created message.

Composing and Registering Patterns
When you click the Patterns button on the main display window, a display panel is displayed.

Click the Apply button to register your pattern. Once a pattern is registered, you can use
TTSnoop as a debugging tool to observe what messages are being sent by other
applications.

Click the Edit Receive Contexts button to add, change, and delete receive message
contexts in patterns. The window displayed enables you to edit contexts to be registered
with your patterns.

Displaying Message Components
When you click the Display button on the main display window, a display panel of
checkboxes is displayed.

When you select a checkbox and click the Apply button, the specified ToolTalk message
component is displayed until you make another selection and apply the change.

Sending Pre–Created Messages
When you click the Send Message button on the main display window, you can send one
of the messages you created and stored using the Messages display.

Receiving Messages
When you click the Start button on the main display window, TTSnoop will display any
incoming messages that match the patterns you registered.

Stop Receiving Messages
When you click the Stop button on the main display window, TTSnoop will stop receiving
messages.

Using ToolTalk Tracing
The ToolTalk ttsession trace shows how ToolTalk pattern matches and delivers every
message ttsession sees. ToolTalk tracing for this release also:

18 CDE ToolTalk Messaging Overview

• Displays a single client’s interactions with ToolTalk. This feature allows implementors to
focus on only one client.

• Filters the ttsession trace by, for example, message type, sender, or receiver.

Accessing ToolTalk Tracing
A command new for this release, tttrace , is the primary way to access ToolTalk tracing. This
command is similar in purpose and command–line interface to the truss command. It
enables you to control the three kinds of ToolTalk tracing. The tttrace command has two
fundamental modes: server mode and client mode.

• In server mode, tttrace directs the indicated session to trace by sending it a
Session_Trace request.

• In client mode, tttrace sets an environment variable and executes the ToolTalk client
command given on the command line. The environment variable in the executed client
instructs libtt whether, and how, to trace client messaging and client API calls.

Note: tttrace is not downward compatible with older servers or with clients using older
versions of libtt . While tttrace will detect and diagnose older servers, it fails silently
on clients using older versions of libtt .

Controlling Tracing

Controlling libtt Tracing
One way to control libtt ’s tracing behavior is to set the environment variable
$TT_TRACE_SCRIPT .

Note: libtt ’s tracing fails gracefully if the variable’s value is corrupt or inconsistent.

Controlling Client–Side Tracing
The tt_trace_control call sets or clears an internal flag to control all client–side tracing. You
can use this call to trace suspect areas in your code. The format of this call is:

int tt_trace_control(int option)

where option 0 to turn traciing off; 1 to turn tracing on; and –1 to toggle tracing on and off.
When tracing is on, the extent of tracing is controlled by the TT_TRACE_SCRIPT variable
or tracefile. This call returns the previous setting of the trace flag.

Tracing Message Traffic in a ToolTalk Session
The Session_Trace request is a ToolTalk request that ttsession registers to handle itself; that
is, ttsession is the handler for the Session_Trace request. This request can be sent by any
ToolTalk client, and, although not recommended, other ToolTalk clients can register to handle
this request. (Note: This method will cause tracing to not work.) The syntax for this request
is:

[file] Session_Trace(in boolean on,

in boolean follow

[in attribute
toPrint

|in state toTrace

|in op toTrace

|in handler_ptype toTrace

|in sender_ptype toTrace][...]);

19CDE ToolTalk Messaging Overview

The Session_Trace request turns message tracing in the scoped–to session on or off.

• If tracing is on and the file attribute of the request is set, subsequent trace output is
appended to the file named by the attribute.

• If tracing is on and the file attribute is not set, tracing continues to the current trace.

By default, daemon mode causes the output to go to the console of the host on which
ttsession is running; job–control mode causes the output to go to ttsession’s standard error.
The following table describes the required and optional arguments for this request.

 Session_Trace Agurments

Argument Description

boolean on Required Turn tracing on or off. If no toTrace arguments
are included and on is true, the previous trace
settings are restored.

boolean follow Required Turn on client–side tracing for Invoked clients.

attribute toPrint Optional Print attribute(s) for each message traced.
Valid attributes are:
• none–print only a one–line description of

traced messages (default)
• all–print all attributes of traced messages

state toTrace Optional State(s) through which to trace messages. In
addition to the Tt_states defined in tt_c.h, valid
states are:
• edge–messages entering initial (TT_SENT)

and final (TT_HANDLED, TT_FAILED)
states.

• deliver–all state changes and all client
deliveries.

• dispatch–deliver + all patterns considered for
matching. (default)

op toTrace
sender_ptype toTrace
handler_ptype toTrace

Optional
Optional
Optional

Trace messages that have toTrace as a value
for the indicated message attribute.
• Any number of toTrace arguments may be

included in the request.
• toTrace may include sh wildcard characters.
• If no toTrace argument is included for a given

message attribute, no value of that attribute
excludes a message from tracing.

The current session tracing behavior changes only if this request is not failed. On failure, the
tt_message_status of the reply is set to one of the errors described in the following
Table.

 Error Messages Returned by Session_Trace
Request

Error Description

TT_ERR_NO_MATCH No handler could be found for the request.

20 CDE ToolTalk Messaging Overview

 Error Messages Returned by Session_Trace
Request

Error Description

TT_ERR_APPFIRST + EACCES ttsession does not have permission to open or
create the trace file.

TT_ERR_APPFIRST + EISDIR The trace file is a directory.

TT_ERR_APPFIRST + ENOSPC There is not enough space in the target file system
to create the trace file.

TT_ERR_APPFIRST + EEXIST Tracing is already occurring on another file.
ttsession resets the file attribute of the reply to
name the existing trace file. To trace to a different
file, first turn off tracing to the current trace file.

Tracing ToolTalk Calls and Messages through the Server
The tttrace function traces message traffic through the server for the indicated ToolTalk
session, or runs a command with ToolTalk client tracing turned on. If neither the session nor
the command is given, the default session is traced. By default, tracing terminates when
tttrace exits. The syntax for this function is:

tttrace [–0FCa] [–o outfile] [–S session | command]

tttrace [–e script | –f scriptfile] [–S session | command]

The following table describes the tttrace options.

 tttrace Options

Option Description

–0 Turns off message tracing in session, or runs the specified command
without message tracing (that is, with only call tracing).

–F Follows all children forked by the indicated command, or subsequently
started in session by ttsession. Normally, only the indicated command
or a ttsession instance is traced. When the –F option is specified, the
process ID is included with each line of trace output to indicate which
process generated it.

–C Do not trace client calls into the ToolTalk API. The default is to trace
the calls.

–a Prints all attributes, arguments, and context slots of traced messages.
The default is to use only a single line when printing a message on the
trace output.

–o outfile The file to be used for the trace output. For session tracing, output
goes to standard output of tttrace.

–S session The session to trace. Defaults to the default session; that is, the
session that tt_open would contact.

21CDE ToolTalk Messaging Overview

 tttrace Options

Option Description

command The ToolTalk client command to invoke and trace.

–e script The script to be used as a ttrace setting.

–f scriptfile The file from which to read the tttrace settings.

tttrace is implemented purely as a ToolTalk client, using the message interface to ttsession
and the TT_TRACE_SCRIPT environment variable. If this variable is set, it tells libtt to turn
on client–side tracing as specified in the trace script. If the first character of the value is ’.’ or
’/’, the value is taken to be the path name of file containing the trace script to use; otherwise,
the value is taken to be an inline trace script.

Formats of Traced Functions
The following is an example of how a traced ToolTalk function looks.

[pid] function_name (params) = return_value (Tt_status)

Message Summary Format
The –a option prints message attributes after a one–line summary of the message, as
follows:

Tt_state Tt_paradigm Tt_class (Tt_disposition in Tt_scope) :
status == Tt_status

State Change Format
State changes are indicated by the following format:

old_state => new_state.

Message Delivery Format
Deliveries are indicated by the following indicated:

Tt_message => procid recipient_procid

The following table explains the messages you may receive during a dispatch trace.

 Reasons for Dispatch Trace

Message Explanation

tt_message_send The message to send.

tt_message_reject The message was rejected.

tt_message_fail The message failed.

tt_message_reply The reply to a message.

tt_session_join The session to join.

tt_file_join The file to join.

tt_message_reply A client called the indicated function.

tt_message_send_on_exit ttsession is dispatching on_exit messages for a client
that disconnected before calling tt_close.

22 CDE ToolTalk Messaging Overview

 Reasons for Dispatch Trace

Message Explanation

tt_message_accept ttsession is dispatching messages that had been
blocked while a ptype was being started. The started
client has now called either tt_message_accept or
tt_message_reply to indicate that the ptype should be
unblocked.

TT_ERR_PTYPE_START A ptype instance was started to receive the message,
but the start command exited before it connected to
ttsession.

TT_ERR_PROCID ttsession lost its connection to the client that was
working on this request.

ttsession –> ttsession Another session wants this session to find recipients
for the message.

ttsession <– ttsession Another session wants to update (for example, fail) a
message originating in this session.

Matching Format
When dispatching is being traced, matching is indicated by one of the following formats:

Tt_message & Tt_pattern {

Tt_message & ptype ptid {

Tt_message & otype otid {

The pattern or signature is printed, followed by:

} == match_score ; [/* mismatch_reason */]

Examples
This sections contains examples of how to use the tttrace function.

Registering a Pattern and Sending a Matching Notice
To register a pattern and send a notice that matches the pattern, type:

% tttrace –a myclientprogram

The following example shows the results.

tt_open() = 0x51708==”7.jOHHM X 129.144.153.55 0” (TT_OK)

tt_fd() = 11 (TT_OK)

tt_pattern_create() = 0x50318 (TT_OK)

tt_pattern_category_set(0x50318, TT_OBSERVE) = 0 (TT_OK)

tt_pattern_scope_add(0x50318, TT_SESSION) = 0 (TT_OK)

tt_pattern_op_add(0x50318, 0x2f308==”Hello World”) = 0 (TT_OK)

tt_default_session() = 0x519e0==”X 129.144.153.55 0” (TT_OK)

tt_pattern_session_add(0x50318, 0x519e0==”X 129.144.153.55 0”) =
0 (TT_OK)

tt_pattern_register(0x50318) = 0 (TT_OK)

tt_message_create() = 0x51af0 (TT_OK)

23CDE ToolTalk Messaging Overview

tt_message_class_set(0x51af0, TT_NOTICE) = 0 (TT_OK)

tt_message_address_set(0x51af0, TT_PROCEDURE) = 0 (TT_OK)

tt_message_scope_set(0x51af0, TT_SESSION) = 0 (TT_OK)

tt_message_op_set(0x51af0, 0x2f308==”Hello World”) = 0 (TT_OK)

tt_message_send(0x51af0) ...

TT_CREATED => TT_SENT:

TT_SENT TT_PROCEDURE TT_NOTICE (TT_DISCARD in TT_SESSION): 0 ==
TT_OK

id:0 7.jOHHM X 129.144.153.55 0

op:Hello World

session:X 129.144.153.55 0

sender:7.jOHHM X 129.144.153.55 0

= 0 (TT_OK)
tt_message_receive() ...

Tt_message => procid <7.jOHHM X 129.144.153.55 0>

TT_SENT TT_PROCEDURE TT_NOTICE (TT_DISCARD in TT_SESSION): 0 ==
TT_OK

id:0 7.jOHHM X 129.144.153.55 0

op:Hello World

session:X 129.144.153.55 0

sender: 7.jOHHM X 129.144.153.55 0

pattern:0:7.jOHHM X 129.144.153.55 0

= 0x51af0 (TT_OK)

To see ttsession’s view of the message flow, type:

% tttrace –a

ttsession’s view of mylientprogram’s message flow is shown in the following example.

tt_message_reply:

TT_SENT => TT_HANDLED:

 TT_HANDLED TT_PROCEDURE TT_REQUEST (TT_DISCARD in TT_SESSION): 0
== TT_OK

id:0 2.jOHHM X 129.144.153.55 0

op:Session_Trace

args:TT_IN string: ”> /tmp/traceAAAa002oL; version 1;
states”[...]

session:X 129.144.153.55 0

sender:2.jOHHM X 129.144.153.55 0

pattern:0:X 129.144.153.55 0

handler:0.jOHHM X 129.144.153.55 0

24 CDE ToolTalk Messaging Overview

Tt_message => procid <2.jOHHM X 129.144.153.55 0>

tt_message_send:

TT_CREATED TT_PROCEDURE TT_NOTICE (TT_DISCARD in TT_SESSION): 0
== TT_OK

id:0 7.jOHHM X 129.144.153.55 0

op:Hello World

session:X 129.144.153.55 0

sender: 7.jOHHM X 129.144.153.55 0

TT_CREATED => TT_SENT:

TT_SENT TT_PROCEDURE TT_NOTICE (TT_DISCARD in TT_SESSION): 0 ==
TT_OK

id:0 7.jOHHM X 129.144.153.55 0

op:Hello World

session:X 129.144.153.55 0

sender: 7.jOHHM X 129.144.153.55 0

Tt_message & Tt_pattern {

id:0:7.jOHHM X 129.144.153.55 0

category:TT_OBSERVE

scopes:TT_SESSION

sessions:X 129.144.153.55 0

ops:Hello World

} == 3;

Tt_message => procid <7.jOHHM X 129.144.153.55 0>

Note: The first message traced will almost always be ttsession’s reply to the request sent
to it by tttrace.

Tracing a Message Flow
To trace the message flow in a specific, non–default session, type:

% tttrace –S ” 01 15303 1342177284 1 0 13691 129.144.153.55 2 ”

where ”01 15303 1342177284 1 0 13691 129.144.153.55 2” is the specific, non–default
session to be traced.

Settings for ToolTalk Tracing
A tttrace script contains settings that control ToolTalk calls and messages. A tttrace script
consists of commands separated by semicolons or newlines. If conflicting values are given
for a setting, the last value is the one used. The following describes these commands.

 tttrace Script Commands

Command Description

version n The version of the tttracefile command syntax used. The current version is 1.

25CDE ToolTalk Messaging Overview

 tttrace Script Commands

Command Description

follow [off | on] Sets whether to follow all children forked by the traced client or subsequently
started in the traced session. Default is off.

[> | >>] outfile File to be used for the trace output. By default, trace output goes to standard
error. Normal shell interpretation of > and >> applies.

functions [all | none | func...] ToolTalk API functions to trace. func may include shell wildcard characters.
Default is all.

attributes [all | none] none (default) means use only a single line when printing a message on the
trace output; all means print all attributes, arguments, and context slots of
traced messages.

states [none | edge | deliver |
dispatch | Tt_state]...

State(s) through which to trace messages. In addition to the Tt_states defined
in tt_c.h, valid states are:
• none – disable all message tracing
• edge – messages entering initial (TT_SENT) and final (TT_HANDLED,

TT_FAILED) states.
• deliver – all state changes and all client deliveries.
• dispatch – deliver plus all patterns considered for matching (default).

ops toTrace...
sender_ptypes toTrace...
handler_ptypes toTrace...

Trace messages that have toTrace as a value for the indicated message
attribute. toTrace may include shell wildcard characters. If no toTrace
argument is included for a given message attribute, then no value of that
attribute excludes a message from tracing.

Appendix A. The Messaging Toolkit
The ToolTalk Messaging Toolkit is a higher–level interface of the ToolTalk API. It provides
common definitions and conventions to easily integrate basic ToolTalk messages and
functionality into an application for optimum inter–operability with other applications that
follow the same message protocols.

Although most of the messages in the ToolTalk Messaging Toolkit are the messages in the
standard ToolTalk message sets, the functions of the Messaging Toolkit transparently take
care of several tasks that would otherwise need to be coded separately. For example, the
ttdt_file_join function will register a pattern to observe Deleted, Reverted, Moved, and
Saved notices for the specified file in the specified scope; it also invokes a callback
message.

General Description of the ToolTalk Messaging Toolkit
Inter–operability is an important theme if independently developed applications are to work
together. The messages in the toolkit have been agreed upon by developers of
inter–operating applications; the protocols form a small, well–defined interface that
maximizes application autonomy.

The ToolTalk Messaging Toolkit plays a key role in application inter–operability and offers
complete support for messaging. The message protocol specification includes the set of
messages and how applications should behave when they receive the messages. These
messages can be retrofitted to any existing application to leverage the functionality of the
application. You can easily add these messages to existing applications to send, receive,
and use shared information.

26 CDE ToolTalk Messaging Overview

Tools that follow the ToolTalk messaging conventions will not use the same ToolTalk syntax
for different semantics, nor will tools fail to talk to each other because they use different
ToolTalk syntax for identical semantics. If these protocols are observed, cooperating
applications can be modified, even replaced, without affecting one another.

Most of the messages in the Messaging Toolkit are the messages in the standard ToolTalk
message sets. For detailed descriptions of the standard ToolTalk message sets, see the
CDE: ToolTalk Reference Manual. The following table lists the functions described in this
chapter that partly comprise the ToolTalk Messaging Toolkit.

 ToolTalk Messaging Toolkit Functions

Function Description

ttdt_close Destroys a ToolTalk communication
endpoint

ttdt_file_event Announces an event about a file

ttdt_file_join Registers to observe ToolTalk events
about a file

ttdt_file_notice Creates and sends a standard ToolTalk
notice about a file

ttdt_file_quit Unregisters interest in ToolTalk events
about a file

ttdt_file_request Creates and sends a standard ToolTalk
request about a file

ttdt_Get_Modified Asks if any ToolTalk client has changes
pending on a file

ttdt_message_accept Accepts the responsibility for handling a
ToolTalk request

ttdt_open Creates a ToolTalk communication
endpoint

ttdt_Revert Requests that a ToolTalk client revert to
the last saved version of a file

ttdt_Save Requests that a ToolTalk client save a file

ttdt_sender_imprint_on Causes a tool to emulate the behavior and
characteristics of the specified ToolTalk
tool

ttdt_session_join Joins a ToolTalk session and registers
patterns and default callbacks for many
standard desktop messages

ttdt_session_quit Unregisters any patterns and default
callbacks registered when session joined,
and quits the ToolTalk session

ttdt_subcontract_manage Manages outstanding requests

ttmedia_Deposit Sends a Deposit request to checkpoint a
document

27CDE ToolTalk Messaging Overview

 ToolTalk Messaging Toolkit Functions

Function Description

ttmedia_load Creates and sends a Media Exchange
request to display, edit, or compose a
document

ttmedia_load_reply Replies to a Display, Edit, or Compose
request

ttmedia_ptype_declare Declares the ptype of a Media Exchange
media editor

tttk_block_while Blocks the program while awaiting a
condition such as a reply

tttk_message_abandon Fails or rejects a message, then destroys
it

tttk_message_create Creates a message that conforms to
messaging conventions

tttk_message_fail Fails a message

tttk_message_receive Retrieves next ToolTalk message

tttk_message_reject Rejects a message

tttk_op_string Returns a string for the operation

tttk_string_op Returns the operation for the string

tttk_Xt_input_handler Processes ToolTalk events for Xt clients

Toolkit Conventions
Most of the messaging conventions for the toolkit consist of descriptions of the standard
ToolTalk message sets. This section describes conventions not related to any particular
standard message set.

28 CDE ToolTalk Messaging Overview

 Messaging Toolkit Conventions

Field Description

fileAttrib Indicates whether the file attribute of the message can or needs to be set. The ToolTalk service
allows each message to refer to a file, and has a mechanism (called “file–scoping”) for
delivering messages to clients that are “interested in” the named file.

opName The name of the operation or event (also called “op”). It is important that different tools use the
same opName to mean the same thing. Unless a message is a standard one, its opName must
be unique; for example, prefix the opName with Company_Product (such as
Acme_HoarkTool_Hoark_My_Frammistat).

requiredArgs Arguments that must always be included in the message.

optionalArgs Extra arguments that may be included in a message. Any optional arguments in a message
must be in the specified order and must follow the required arguments.

vtype argumentName A description of a particular argument. A vtype is a programmer–defined string that describes
what kind of data a message argument contains. The ToolTalk service uses vtypes only for
matching sent message instances with registered message patterns. Every vtype should by
convention map to a single, well–known data type.

Using the Messaging Toolkit When Writing Applications
To use the toolkit, include the ToolTalk Messaging Toolkit header file:

#include < Tt/ttk.h>

The ToolTalk Messaging Toolkit
This section contains a description of functions that are part of the ToolTalk Messaging
Toolkit.

ttdt_close
Tt_status ttdt_close(const char * procid,

 const char * new_procid,

 int sendStopped);

The ttdt_close function destroys a ToolTalk communication endpoint. This function calls the
ToolTalk function tt_close .

• If the value of procid is != 0, this function calls

tt_default_procid_set(procid)

• If the value of new_procid is != 0, this function calls

tt_default_procid_set(new_procid)

• If the sendStopped parameter is set, this function sends a Stopped notice.

The ttdt_close function can return any error returned by the ToolTalk functions
tt_default_procid_set and tt_close . If the Sending notice fails, no errors are propagated.

ttdt_file_event
Tt_status ttdt_file_event(Tt_message context,

Tttk_op event,

Tt_pattern * patterns,

29CDE ToolTalk Messaging Overview

int send);

The ttdt_file_event function uses the ToolTalk service to announce an event about a file.
This function creates and, optionally, sends a ToolTalk notice that announces an event
pertaining to a specified file. This file is indicated in the path name that was passed to the
ttdt_file_join function when the patterns were created.

• The following table describes the effect of the value of the event parameter on the
announcement made.

 Effect of event Parameter

Event Announced Announcement

TTDT_MODIFIED Registers in the scope passed to the ttdt_file_join function to
announce the event to interested tools that handle
Get_Modified, Save, and Revert requests.

TTDT_SAVED,
TTDT_REVERTED

Unregisters handler patterns for Get_Modified, Save, and
Revert requests.
If the send parameter is set, this function sends a Saved or
Reverted notice, respectively, in the scope.

• If the send parameter is set, this function sends the Modified notice in the scope.

• If the context parameter is a value other than zero, messages created by this routine
inherit all contexts whose slotname begins with ENV_.

The following table lists the possible errors that can be returned by this function.

 Possible Errors Returned by ttdt_file_event

Error Returned Description

TT_DESKTOP_EINVAL The event notice was invalid.
Valid event notices are TTDT_MODIFIED, TTD_TSAVED,
and TTDT_REVERTED.

TT_ERR_POINTER The patterns parameter was null.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount
of active messages (2000) it can properly handle.

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

ttdt_file_join
Tt_message (*Ttdt_file_cb)(Tt_message msg,

Tttk_op op,

char * pathname,

void * clientdata,

int same_euid_egid,

int same_procid);

30 CDE ToolTalk Messaging Overview

Tt_pattern * ttdt_file_join(const char * pathname,

Tt_scope the_scope,

int join,

Ttdt_file_cb cb,

void * clientdata);

The ttdt_file_join function registers to observe ToolTalk events on the specified file. It
registers in the scope to observe Deleted, Modified, Reverted, Moved, and Saved notices.

• The callback message argument Ttdt_file_cb takes the parameters listed in the following
table.

 Parameters taken by Ttdt_file_cb

Parameter Description

message The message being sent.

op The operation being requested.

pathname The path name of the file to which the message pertains. This
copy can be freed with the ToolTalk function tt_free.

clientdata The client data contained in the message.

same_euid_egid A flag that identifies the sender; if this value is true, the sender
can be trusted.

same_procid A flag that identifies the sender; if this value is true, the sender
is the same procid as the receiver.

• If the value of the_scope parameter is zero (that is, TT_SCOPE_NONE), the file scope
is set to the default (TT_BOTH); however, if, for example, the ToolTalk database server
rpc.ttdbserver is not installed on the file server that owns pathname , the file scope is
set to TT_FILE_IN_SESSION.

The ttdt_file_join function associates the value of the_scope and a copy of pathname with
the Tt_patterns returned to allow the ttdt_file_quit function to access the patterns. The
caller can modify or free pathname after the ttdt_file_join call returns.

• If the value of the join parameter is true, this function calls

tt_file_join(pathname)

This function returns a null–terminated array of Tt_pattern. Use the ttdt_file_quit function
to destroy the array. If an error is returned, the returned array is an error pointer that can be
decoded with tt_ptr_error . The following table is a list of the possible errors returned by the
ttdt_file_join function.

31CDE ToolTalk Messaging Overview

 Possible Errors Returned by ttdt_file_join

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk database
needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk database
in the expected place.

TT_ERR_PATH The ToolTalk service was not able to read a directory in the
specified file path name.

TT_ERR_NOMEM There is not enough memory available to perform the operation.

ttdt_file_notice
Tt_message ttdt_file_notice(Tt_message context,

Tttk_op op,

Tt_scope scope,

const char * pathname,

int send_and_destroy);

The ttdt_file_notice function creates and, optionally, sends a standard ToolTalk notice
about a file. Use this function to create the following standard file notices: Created, Deleted,
Moved, Reverted, Saved, and Modified.

Note: The ttdt_file_event function is a higher–level interface than the ttdt_file_notice
function and is the preferred method to send all notices except the Moved notice.

• If the context parameter is a value other than zero, messages created by this routine
inherit all contexts whose slotname begins with ENV_.

• This function creates a notice with the specified op and scope parameters, and sets its
file attribute to pathname parameter.

• If the send_and_destroy parameter is set, this function sends the message and then
destroys it.

If the value of the send_and_destroy parameter is false, the created message is returned;
if the value of the send_and_destroy parameter is true, zero is returned.

If an error occurs, an error pointer is returned. Use tt_ptr_error to find out the Tt_status.
The following table describes possible errors returned by this function.

32 CDE ToolTalk Messaging Overview

 Possible Errors Returned by ttdt_file_notice

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount
of active messages (2000) it can properly handle.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk
database needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_DESKTOP_EINVAL The operation was moved, and the value of the
send_and_destroy parameter was true.

TT_ERR_POINTER The path name was null, or was a ToolTalk error pointer.

ttdt_file_quit
Tt_status ttdt_file_quit(Tt_pattern * patterns,

int quit);

The ttdt_file_quit function unregisters interest in ToolTalk events about a file. This function
destroys patterns. If the quit parameter is set, this function calls

tt_file_quit(pathname)

Use this function to unregister interest in the path name that was passed to the ttdt_file_join
function when patterns was created. The following table lists the possible errors returned
by this function.

 Possible Errors Returned by ttdt_file_quit

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service
tries to restart ttsession if it is not running. This error indicates
that the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk database
needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_ERR_POINTER The patterns were null or otherwise invalid.

33CDE ToolTalk Messaging Overview

ttdt_file_request
Tt_message ttdt_file_request(

Tt_message context,

Tttk_op op,

Tt_scope scope,

const char pathname,

Ttdt_file_cb cb,

void client_data,

int send_and_destroy

);

The ttdt_file_request function creates, and optionally sends, any standard Desktop
file–scoped request (such as Get_Modified, Save, and Revert).

Note: This function is a lower–level interface than the ttdt_Get_Modified, ttdt_Save, and
ttdt_Revert functions, which create and send the request and then block on its reply.

The ttdt_file_request function creates a request with the specified op and s cope, and
sets its file attribute to pathname. Per Desktop messaging conventions, an unset Tt_mode
argument of TT_IN and the vtype File is added to the request; and if the specified
operation is TTDT_GET_MODIFIED, an unset Tt_mode argument of TT_OUT and the vtype
Boolean is also added to the request.

If context is not zero, the request created by this routine inherits from context all
contexts whose slotname are prefixed with ENV_.

This function installs cb as a message callback for the created request, and ensures that
client data will be passed into the callback. If send is true, this function sends the request
before returning the handle to it.

This function returns the created Tt_message when successful. If an error occurs, an error
pointer is returned. Use tt_ptr_error to find out the Tt_status. The following table lists the
possible errors returned by this function.

 Possible Errors Returned by ttdt_file_request

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service
tries to restart ttsession if it is not running. This error
indicates that the ToolTalk service is either not installed or
not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough available memory to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount of
active messages (2000) it can properly handle.

34 CDE ToolTalk Messaging Overview

 Possible Errors Returned by ttdt_file_request

Error Returned Description

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk database
needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_ERR_POINTER The path name was null or otherwise invalid.

ttdt_Get_Modified
int ttdt_Get_Modified(Tt_message context,

const char * pathname,

Tt_scope the_scope,

XtAppContext app2run,

int ms_timeout);

The ttdt_Get_Modified function asks if any ToolTalk client has changes pending on a file.
This function sends a Get_Modified request and waits for a reply.

• If the context parameter is a value other than zero, messages created by this routine
inherit all contexts whose slotname begins with ENV_.

• The Get_Modified request asks if any ToolTalk client has changes pending on pathname
that it intends to make persistent.

• The the_scope parameter indicates the scope in which the Get_Modified request is
sent. If the value of this parameter is zero (that is, TT_SCOPE_NONE), the file scope is set
to the default (TT_BOTH); however, if, for example, the ToolTalk database server
rpc.ttdbserver is not installed on the file server that owns pathname , the file scope
is set to TT_FILE_IN_SESSION .

• The app2run and ms_timeout parameters are passed to the tttk_block_while
function to block on the reply to the Get_Modified request sent by this function.

If the Get_Modified request receives an affirmative reply within the specified time out, the
ttdt_Get_Modified function returns non–zero; otherwise, it returns zero. This call does not
return any errors.

ttdt_message_accept
Tt_pattern * ttdt_message_accept(Tt_message contract,

 Ttdt_contract_cb cb,

void * clientdata,

Widget shell,

int accept,

int sendStatus);

The ttdt_message_accept function accepts a contract to handle a ToolTalk request. A tool
calls this function when it wants to accept responsibility for handling (that is, failing or
rejecting) a request.

A Ttdt_contract_cb argument takes the parameters listed in the following table.

35CDE ToolTalk Messaging Overview

 Parameters Taken by the Ttdt_contract_cb
Argument

Parameter Description

Tt_message msg The request in the sent state.
The client program must either fail, reject, or reply to the
message.

Tttk_op op The operation of the incoming request.

Widget shell The shell passed to the ttdt_message_accept function.

void *clientdata The client data passed to the ttdt_message_accept
function.

Tt_message contract The contract passed to the ttdt_message_accept
function.

If the callback processes the message msg successfully, it returns zero; otherwise, it
returns a tt_error_pointer cast to Tt_message .

If the callback does not consume the message msg, it returns the message and passes the
TT_CALLBACK_CONTINUE routine down the call stack to offer the message to other
callbacks, or to return it to the tt_message_receive call.

The ttdt_message_accept function registers in the default session for the
handler–addressed requests described in the following table.

 Requests for which ttdt_message_accept Registers

Request How Request Is Handled

Get_Geometr
y,
Set_Geometr
y

If the shell parameter is not null, these requests are handled transparently; i
the shell parameter is null and the cb parameter is not null, these requests
are passed to the callback routine; otherwise, these requests fail with the
error TT_DESKTOP_ENOTSUP.

Get_Iconifi
ed,
Set_Iconifi
ed

If the shell parameter is not null, these requests are handled transparently; i
the shell parameter is null and the cb parameter is not null, these requests
are passed to the callback routine; otherwise, these requests fail with the
error TT_DESKTOP_ENOTSUP.

Get_Mapped,
Set_Mapped

If the shell parameter is not null, these requests are handled transparently; i
the shell parameter is null and the cb parameter is not null, these requests
are passed to the callback routine; otherwise, these requests fail with the
error TT_DESKTOP_ENOTSUP.

Raise If the shell parameter is not null, this request is handled transparently; if
the shell parameter is null and the cb parameter is not null, these requests
are passed to the callback routine; otherwise, these requests fail with the
error TT_DESKTOP_ENOTSUP.

Lower If the shell parameter is not null, this request is handled transparently; if
the shell parameter is null and the cb parameter is not null, these requests
are passed to the callback routine; otherwise, these requests fail with the
error TT_DESKTOP_ENOTSUP.

36 CDE ToolTalk Messaging Overview

 Requests for which ttdt_message_accept Registers

Request How Request Is Handled

Get_XInfo,
Set_XInfo

If the shell parameter is not null, these requests are handled transparently; if
the shell parameter is null and the cb parameter is not null, these requests
are passed to the callback routine; otherwise, these requests fail with the
error TT_DESKTOP_ENOTSUP.

Pause If the cb parameter is not null, this request is passed to the callback routine;
otherwise, it fails with the error TT_DESKTOP_ENOTSUP.

Resume If the cb parameter is not null, this request is passed to the callback routine;
otherwise, it fails with the error TT_DESKTOP_ENOTSUP.

Quit If the cb parameter is not null, this request is passed to the callback routine;
otherwise, it fails with the error TT_DESKTOP_ENOTSUP.

Get_Status If the cb parameter is not null, this request is passed to the callback routine;
otherwise, it fails with the error TT_DESKTOP_ENOTSUP.

If ��� �	��
��� �
�
���� ��� � TT_WRN_START_MESSAGE message status, the message
caused the tool to be started.

Note: The started tool should join any scopes it wants to serve before accepting the
contract so that it will receive any other messages already dispatched to its ptype;
otherwise, the tool should undeclare its ptype while it is busy. If the tool does not join
any scopes, the dispatched messages will cause other instances of the ptype to be
started.

If the accept argument is true, the ttdt_message_accept function calls

tt_message_accept(contract)

If the sendStatus argument is true, the ttdt_message_accept function sends a Status
notice to the requestor, using the parameters (if any) passed to the ttdt_open function.

This function returns a null–terminated array of Tt_pattern. Use the tttk_patterns_destroy
function to destroy the array. If an error is returned, the returned array is an error pointer that
can be decoded with tt_ptr_error. The following table is a list of the possible errors returned
by the ttdt_message_accept function.

37CDE ToolTalk Messaging Overview

 Possible Errors Returned by
ttdt_message_accept

Returned Error Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service
tries to restart ttsession if it is not running. This error indicates
that the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_POINTER The pointer passed does not point at an object of the correct
type for this operation. For example, the pointer may point to an
integer when a character string is needed.

TT_ERR_UNIMP The ttsession for the default session is a version (1.0 or 1.0.1)
that does not support the tt_message_accept function.
Note: If the contract argument has a
TT_WRN_START_MESSAGE message status, messages to
the tool’s ptype will remain blocked until the contract is
rejected, replied to, or failed.

ttdt_open
char * ttdt_open(int * ttfd,

const char * toolname,

const char * vendor,

const char * version,

int sendStarted);

The ttdt_open function creates a ToolTalk communication endpoint. This function calls
tt_open and tt_fd functions. The ttdt_open function associates toolname, vendor, and
version with the created procid. It initializes the new procid’s default contexts from
environ(5) . If the sendStarted argument is set, this function sends a Started notice.

The ttdt_open function returns the created procid in a string that can be freed with the
tt_free function.

This function can return any error returned by the tt_open and tt_fd functions. If the Started
notice fails, errors are not propagated.

ttdt_Revert
Tt_status ttdt_Revert(Tt_message context,

const char * pathname,

Tt_scope the_scope,

XtAppContext app2run,

int ms_timeout);

The ttdt_Revert function requests a ToolTalk client to revert a file. It sends a Revert request
in the_scope and waits for a reply. The Revert request asks the handling ToolTalk client to
discard any changes pending on pathname.

• If the context parameter is a value other than zero, messages created by this routine
inherit all contexts whose slotname begins with ENV_.

• If the value of the the_scope parameter is zero (that is, TT_SCOPE_NONE), the file
scope is set to the default (TT_BOTH); however, if, for example, the ToolTalk database

38 CDE ToolTalk Messaging Overview

server rpc.ttdbserver is not installed on the file server that owns pathname , the file scope
is set to TT_FILE_IN_SESSION .

• The app2run and ms_timeout parameters are passed to the tttk_block_while
function to block on the reply to the Revert request sent by this function.

If the request receives an affirmative reply within the indicated timeout, the ttdt_Revert
function returns TT_OK; otherwise, it returns either the tt_message_status of the failure
reply, or one of the errors listed in the following table.

 Possible Errors Returned by ttdt_Revert

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum
amount of active messages (2000) it can properly
handle.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk
database needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_DESKTOP_ETIMEOUT No reply was received before the allotted timeout.

TT_DESKTOP_EPROTO The request was failed; however, the handler set the
tt_message_status of the failure reply to TT_OK
instead of a specific error status.

TT_ERR_POINTER Path name was null, or was a ToolTalk error pointer.

ttdt_Save
Tt_status ttdt_Save(Tt_message context,

 const char * pathname,

 Tt_scopethe_scope,

 XtAppContext app2run,

 int ms_timeout);

The ttdt_Save function requests a ToolTalk client to save a file. It sends a Save request in
the_scope and waits for a reply. The Save request asks the handling ToolTalk client to
discard any changes pending on pathname.

• If the context parameter is a value other than zero, messages created by this routine
inherit all contexts whose slotname begins with ENV_.

• If the value of the the_scope parameter is zero (that is, TT_SCOPE_NONE), the file
scope is set to the default (TT_BOTH); however, if, for example, the ToolTalk database

39CDE ToolTalk Messaging Overview

server rpc.ttdbserver is not installed on the file server that owns pathname , the file
scope is set to TT_FILE_IN_SESSION .

• The app2run and ms_timeout parameters are passed to the tttk_block_while
function to block on the reply to the Save request sent by this function.

If the request receives an affirmative reply within the indicated timeout, the ttdt_Save
function returns TT_OK; otherwise, it returns either the tt_message_status of the failure
reply, or one of the errors listed in the following table.

 Possible Returns of the ttdt_Save function

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum
amount of active messages (2000) it can properly
handle.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk
database needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_DESKTOP_ETIMEOUT No reply was received before the allotted timeout.

TT_DESKTOP_EPROTO The request was failed; however, the handler set the
tt_message_status of the failure reply to TT_OK
instead of a specific error status.

TT_ERR_POINTER Path name was null, or was a ToolTalk error pointer.

ttdt_sender_imprint_on
Tt_status ttdt_sender_imprint_on(const char * handler,

Tt_message contract,

char ** display,

int * width,

int * height,

int * xoffset,

int * yoffset,

XtAppContext app2run,

int ms_timeout);

The ttdt_sender_imprint_on function causes the calling tool (“ToolB”) to adopt the behavior
and certain characteristics of another tool (“ToolA”). ToolB adopts ToolA’s X11 display, locale,

40 CDE ToolTalk Messaging Overview

and current working directory; it also learns ToolA’s X11 geometry so that it can position itself
appropriately.

If the display parameter is null, the environment variable $DISPLAY is set to ToolA’s
display; otherwise, ToolA’s display is returned in this parameter. The returned value is a
string that can be freed with the ToolTalk tt_free function.

This function sends a Get_Geometry request to ToolA. If ToolA does not return a value for
any or all of the geometry parameters:

• If a value for the width parameter is not returned, it is set to –1 .

• If a value for the height parameter is not returned, it is set to –1.

• If a value for the xoffset parameter is not returned, it is set to INT_MAX.

• If a value for the yoffset parameter is not returned, it is set to INT_MAX.

If the width, height, xoffset, and yoffset parameters in the
ttdt_sender_imprint_on function are all set to null, a Get_Geometry request is not
sent to ToolA.

The app2run and ms_timeout parameters are passed to the tttk_block_while
function to block on the replies to the Get_Geometry request sent by this function.

The following table lists the possible errors that can be returned by this function.

 Possible Errors Returned by the
ttdt_sender_imprint_on

Error Returned Description

TT_DESKTOP_ETIMEDOUT One or more of the sent requests did not complete
before the allotted timeout.

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running.
This error indicates that the ToolTalk service is either
not installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or
invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum
amount of active messages (2000) it can properly
handle.

ttdt_session_join
Tt_message (*Ttdt_contract_cb) (Tt_message msg,

 void * clientdata

Tt_message contract);

Tt_pattern * ttdt_session_join(const char * sessid,

Ttdt_session_cb cb,

Widget shell,

41CDE ToolTalk Messaging Overview

void * clientdata,

int join);

The ttdt_session_join function joins a ToolTalk session as a “good desktop citizen”; that is, it
registers patterns and default callbacks for many standard desktop message interfaces
when it joins the session sessid. The following table lists the message interfaces for which
this function currently registers.

 Standard Messages for which the ttdt_session_join Registers

Request How Message Is Handled

Get_Environment,
Set_Environment

These messages are handled transparently.

Get_Locale,
Set_Locale

These messages are handled transparently.

Get_Situation,
Set_Situation

These messages are handled transparently.

Signal This message is handled transparently.

Get_Sysinfo This message is handled transparently.

Get_Geometry,
Set_Geometry

If the value of the shell parameter is not null and the shell is a realized
mappedWhenManaged applicationShellWidget, these messages are handled
transparently; if the shell is not a mappedWhenManaged
applicationShellWidget, these messages fail with the error
TT_DESKTOP_ENOTSUP.

Get_Iconified,
Get_Iconified

If the value of the shell parameter is not null and the shell is a realized
mappedWhenManaged applicationShellWidget, these messages are handled
transparently; if the shell is not a mappedWhenManaged
applicationShellWidget, these messages fail with the error
TT_DESKTOP_ENOTSUP.

Get_Mapped,
Set_Mapped

If the value of the shell parameter is not null and the shell is a realized
mappedWhenManaged applicationShellWidget, these messages are handled
transparently; if the shell is not a mappedWhenManaged
applicationShellWidget, these messages fail with the error
TT_DESKTOP_ENOTSUP.

Raise If the value of the shell parameter is not null and the shell is a realized
mappedWhenManaged applicationShellWidget, this message is handled
transparently; if the shell is not a mappedWhenManaged
applicationShellWidget, this message fails with the error
TT_DESKTOP_ENOTSUP.

Lower If the value of the shell parameter is not null and the shell is a realized
mappedWhenManaged applicationShellWidget, this message is handled
transparently; if the shell is not a mappedWhenManaged
applicationShellWidget, this message fails with the error
TT_DESKTOP_ENOTSUP.

Get_XInfo If the value of the shell parameter is not null, this message is handled
transparently; otherwise, this message fails with the error
TT_DESKTOP_ENOTSUP.

42 CDE ToolTalk Messaging Overview

 Standard Messages for which the ttdt_session_join Registers

Request How Message Is Handled

Set_XInfo If the value of the shell parameter is not null and the shell is a realized
mappedWhenManaged applicationShellWidget, this message is handled
transparently; if the shell is not a mappedWhenManaged
applicationShellWidget, this message fails with the error
TT_DESKTOP_ENOTSUP.

Pause If the cb parameter is not null, this message is passed to the callback; the
cb parameter is null, this message fails with the error
TT_DESKTOP_ENOTSUP.

Resume If the cb parameter is not null, this message is passed to the callback; the
cb parameter is null, this message fails with the error
TT_DESKTOP_ENOTSUP.

Quit If the cb parameter is not null, this message is passed to the callback; the
cb parameter is null, this message fails with the error
TT_DESKTOP_ENOTSUP.

Get_Status If the cb parameter is not null, this message is passed to the callback; the
cb parameter is null, this message fails with the error
TT_DESKTOP_ENOTSUP.

Do_Command If the cb parameter is not null, this message is passed to the callback; the
cb parameter is null, this message fails with the error
TT_DESKTOP_ENOTSUP.

If the sessid parameter is null, the default session is joined.

If the join parameter is set, the specified session is joined.

A Ttdt_contract_cb message takes the parameters described in the following table. If the
callback does not consume the message, it returns the message; if it consumes the
message, it returns either zero or a error pointer cast to Tt_message.

 Parameters taken by Ttdt_session_cb

Parameter Description

Tt_message msg The request in the sent state.
The client program must either fail, reject, or reply to the
message.
Note: Destroy the message msg after it is processed.

void *clientdata The clientdata passed to either the ttdt_session_join or
ttdt_message_accept function.

Tt_message
contract

The contract passed to the ttdt_message_accept function. If
the callback is installed by the ttdt_session_join function, the
value for the contract parameter is always zero.

The ttdt_session_join function returns a null–terminated array of Tt_pattern, which can be
passed to the ttdt_session_quit function to be destroyed. If an error occurs, the returned
array that is an error pointer. Use tt_ptr_error to find the Tt_status. The following table lists
the possible errors returned.

43CDE ToolTalk Messaging Overview

 Possible Errors Returned by the ttdt_session_join

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_SESSION An out–of–date or invalid ToolTalk session was specified.

TT_ERR_POINTER The pointer passed does not point at an object of the correct
type for this operation. For example, the pointer may point to an
integer when a character string is needed.

TT_ERR_NOMEM There is not enough memory available to perform the operation.

ttdt_session_quit
Tt_status ttdt_session_quit(const char * sessid,

Tt_pattern * sess_pats,

int quit);

The ttdt_session_quit function quits a ToolTalk session as a “good desktop citizen”; that is, it
unregisters all the patterns and default callback it registered when it joined the session.

This function destroys all patterns in sess_pats. If the quit parameter is set, it quits the
session sessid ; if the sessid parameter is null, it quits the default session.

The following table lists the errors that can be returned by this function.

 Possible Errors Returned by the ttdt_session_quit

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_SESSION An out–of–date or invalid ToolTalk session was specified.

TT_ERR_POINTER The pointer passed does not point at an object of the correct
type for this operation. For example, the pointer may point to an
integer when a character string is needed.

ttdt_subcontract_manage
Tt_pattern * ttdt_subcontract_manage(Tt_message subcontract,

Ttdt_contract_cb cb,

Widget shell,

void * clientdata);

44 CDE ToolTalk Messaging Overview

The ttdt_subcontract_manage function manages an outstanding request. It allows the
requesting tool to manage the standard Desktop interactions with the tool that is handling
the request. This function registers in the default session for TT_HANDLER–addressed
Get_Geometry and Get_XInfo requests, and Status notices.

If the shell parameter is null, the request or notice is passed to the cb parameter;
otherwise, the request is handled transparently.

The ttdt_subcontract_manage function returns a null–terminated array of Tt_pattern, which
can be passed to the ttdt_session_quit function to be destroyed. If an error occurs, the
returned array that is an error pointer. Use tt_ptr_error to find the Tt_status. The following
table lists the possible errors returned.

 Possible Errors Returned by the
ttdt_subcontract_manage

Error Returned Description

TT_ERR_NOMEM There is not enough memory available to perform the operation.

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service
tries to restart ttsession if it is not running. This error indicates
that the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_POINTER The subcontract parameter was not a valid
Tt_message.

TT_ERR_EINVAL Both the shell and cb parameters were null.

ttmedia_Deposit
Tt_status ttmedia_Deposit(Tt_message load_contract,

const char * buffer_id,

const char * media_type,

const unsigned char *
new_contents,

int new_len,

const char * pathname,

XtAppContext app2run,

int ms_timeout);

The ttmedia_Deposit function sends a Deposit request to checkpoint a document that was
the subject of a Media Exchange load_contract request such as Edit, Compose, or Open.

This function creates and sends a Deposit request and returns the success or failure of that
request.

• load_contract is the request that caused this editor to load the document

• buffer_id is the id of the buffer this editor created if the document was loaded by an
Open request

• media_type is the vtype of the contents argument of the sent request

45CDE ToolTalk Messaging Overview

• new_contents and new_len are the values for the contents argument

After the request is sent, app2run and ms_timeout are passed to the
tttk_block_while function to wait for the reply.

 Possible Errors Returned by the ttmedia_Deposit

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough available memory to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount of
active messages (2000) it can properly handle.

TT_ERR_DBAVAIL The ToolTalk service could not access the ToolTalk
database needed for this operation.

TT_ERR_DBEXIST The ToolTalk service did not find the specified ToolTalk
database in the expected place.

TT_DESKTOP_ETIMEOUT No reply was received before the allotted timeout.

TT_ERR_POINTER Path name was null, or was a ToolTalk error pointer.

ttmedia_load
Tt_message (*Ttmedia_load_msg_cb) (Tt_message msg,

void * clientdata,

Tttk_op op,

unsigned char *contents,

int len,

char * file);

Tt_message ttmedia_load(Tt_message context,

Ttmedia_load_msg_cbcb,

void * clientdata,

Tttk_op op,

const char * media_type,

const unsigned char* contents,

 int len,

const char * file,

const char * docname,

int send);

46 CDE ToolTalk Messaging Overview

The ttmedia_load function creates and, optionally, sends a Media Exchange request to
display, edit, or compose a document. This function creates and sends Display, Edit, or
Compose requests.

Note: Use the ttdt_subcontract_manage function immediately after sending the request
created by this message to manage the standard interactions with the handler of the
request.

If value of the context argument is not zero, messages created by this routine inherit all
contexts whose slotname begins with ENV_.

The clientdata argument is passed to the cb argument when the reply is received, or
when intermediate versions of the document are checkpointed through Deposit requests.

The op argument must be either T TME_DISPLAY, TTME_EDIT, or
TTME_COMPOSE.

The media_type argument names the data format of the document. This argument
usually determines which application is chosen to handle the request.

The contents and len arguments specify the document. If the value of both of these
arguments is zero and the value of the file argument is not zero, the document is
assumed to be contained in the specified file.

If the docname argument is not null, it is used as the title of the document.

If the send argument is true, the message is sent before it is returned.

The following table lists the parameters taken by a Ttmedia_load_msg_cb message.

 Parameters Taken by the Ttmedia_load_msg_cb

Parameter Description

Tt_message msg The reply to the request, or a Deposit request with a
messageID argument that names the
tt_message_id of the load request. If the
value of this parameter is a Deposit
request, the client program must either
fail or reply to the request.
Note: Destroy the message msg after it is processed.

Tttk_op op The operation of the message (either TTME_DEPOSIT or
the operation passed to the ttmedia_load message).

unsigned char *
contents
int len
char *file

The contents of the arriving document. If the len
argument is zero, the document is contained
in the specified file. If the contents or
file arguments are non–null, use the
ToolTalk function tt_free to free them.

void *clientdata The client data passed to the ttmedia_load message.

If the message is processed successfully, the callback returns zero; if the processing results
in an error, the callback returns an error pointer cast to Tt_message.

If the callback does not consume the message msg, it returns the message and the toolkit
passes the TT_CALLBACK_CONTINUE routine down the call stack to offer the message to
other callbacks, or to return it to the tt_message_receive call.

47CDE ToolTalk Messaging Overview

Upon completion, the ttmedia_load function returns the request it was asked to build. If an
error occurs, this function returns an error pointer. Use tt_ptr_error to find the Tt_status. The
following table lists the possible errors returned.

 Possible Errors Returned by the ttmedia_load

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough memory available to perform the
operation.

TT_ERR_OVERFLOW The ToolTalk service has received the maximum amount
of active messages (2000) it can properly handle.

ttmedia_load_reply
Tt_message ttmedia_load_reply(Tt_message contract,

const unsigned char * new_contents,

int new_len,

int reply_and_destroy
);

Use the ttmedia_load_reply function to reply to a Media Exchange request to display, edit,
or compose a document.

If both the new_contents and new_len arguments are non–zero, their value is used to
set the new contents of the document in the appropriate output argument of the contract
argument. If the reply_and_destroy argument is true, a reply is made to the contract
argument and then the message is destroyed.

The following table lists the possible errors returned.

 Possible Errors Returned by the
ttmedia_load_reply

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NUM

TT_ERR_NOTHANDLER

48 CDE ToolTalk Messaging Overview

ttmedia_ptype_declare
Tt_message (*Ttmedia_load_pat_cb) (Tt_message msg,

void * clientdata,

Tttk_op op,

 Tt_status diagnosis,

 unsigned char * contents,

int len,

char * file,

char * docname);

Tt_status ttmedia_ptype_declare(const char * ptype,

 int base_opnum,

 Ttmedia_load_pat_cb cb,

 void * clientdata,

 int declare);

The ttmedia_ptype_declare function declares the ptype of a Media Exchange media editor.
This function initializes an editor that implements the Media Exchange message interface for
a particular media type.

• It calls the cb argument when the editor is asked to edit a document of the kind
supported by ptype .

• It installs a toolkit–internal operation number (opnum) callback on a series of signatures
that the ptype is assumed to contain. The toolkit–internal opnum callback passes
clientdata to the cb argument when a request is received that matches one of these
signatures. The opnums start at base_opnum , which must be zero or a multiple of 1000.

• If the declare argument is true, it calls

tt_ptype_declare(ptype)

If the ptype implements several different media types, the ttmedia_ptype_declare function
can be called multiple times. Each call must have a different base_opnum value.

Note: The ttmedia_ptype_declare function can be called multiple times; however, the
declare argument can “true” only once.

The following table lists the parameters taken by a Ttmedia_load_pat_cb message.

 Parameters Taken by Ttmedia_load_pat_cb

Parameter Description

Tt_message msg The request sent. The client program must either fail,
reject, or reply to the request.

Tttk_op op The operation of the incoming request (either
TTME_COMPOSE, TTME_EDIT, or TTME_DISPLAY.

49CDE ToolTalk Messaging Overview

 Parameters Taken by Ttmedia_load_pat_cb

Parameter Description

Tt_status diagnosis The error code with which the toolkit recommends the
request should be failed (for example,
TT_DESKTOP_ENODATA). If the diagnosis is not
TT_OK and the callback routine returns the message
msg, the toolkit fails the message msg
and destroys it.

unsigned char *
contents
int len
char *file

The contents of the arriving document. If the len
argument is zero, the document is
contained in specified file. If value of
the contents or file arguments is
non–null, use the ToolTalk function
tt_free to free them.

char * docname The name of the document, if any.

void * clientdata The client data passed to the ttmedia_ptype_declare
message.

If the message is processed successfully, the callback returns zero; if the processing results
in an error, the callback returns an error pointer cast to Tt_message.

If the callback does not consume the message msg and the value of the diagnosis
argument is not TT_OK, it returns the message and the toolkit passes the
TT_CALLBACK_CONTINUE routine down the call stack to offer the message to other
callbacks, or to return it to the tt_message_receive call.

If an error occurs, this function returns one of the errors listed in the following table.

 Possible Errors Returned by the
ttmedia_ptype_declare

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_PTYPE The ToolTalk service could not locate the specified ptype.

TT_ERR_POINTER The pointer passed does not point at an object of the correct
type for this operation. For example, the pointer may point to an
integer when a character string is needed.

tttk_block_while
Tt_statustttk_block_while(

const int *blocked,

int ms_timeout);

The tttk_block_while function blocks the program while it awaits a reply for the ms_timout
time.

50 CDE ToolTalk Messaging Overview

tttk_message_abandon
Tt_statustttk_message_abandon(Tt_messagemsg);

The tttk_message_abandon function abandons the request, and then destroys it.

Note: A program should abandon a message when it does not understand the message
and wants to dispose of it.

If an error occurs, this function returns one of the errors listed in the following table.

 Possible Errors Returned by the
tttk_message_abandon

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk
service tries to restart ttsession if it is not running. This
error indicates that the ToolTalk service is either not
installed or not installed correctly.

TT_ERR_POINTER The pointer passed does not point at an object of the
correct type for this operation. For example, the pointer
may point to an integer when a character string is
needed.

TT_ERR_NOTHANDLER

tttk_message_create
Tt_message tttk_message_create(Tt_message context,

Tt_class the_class,
Tt_scope the_scope,
const char * handler,
const char * op,
Tt_message_callback callback);

The tttk_message_create function creates a message that conforms to the conventions.
This function provides a simple way to create a message that propagates inherited contexts
from one message to another.

The tttk_message_create function creates a message and copies onto it all the context slots
from context whose slotname begins with ENV_. The created message is given a
Tt_class value of the_class and a Tt_scope value of the_scope .

If the handler parameter is null, the message is given a Tt_address of TT_PROCEDURE;
otherwise, the message is TT_HANDLER–addressed to that procid.

If the op argument is not null, the message’s op argument is set to that value.

If the callback argument is not null, it is added to the message as a message callback.

If successful, the tttk_message_create function returns the created Tt_message, which can
be modified, sent, and destroyed in the same way as any other Tt_message.

If an error occurs, an error pointer is returned. Use tt_ptr_error to find the Tt_status. The
following table lists the possible errors returned.

51CDE ToolTalk Messaging Overview

 Possible Errors Returned by the
tttk_message_create

Error Returned Description

TT_ERR_NOMP The ttsession process is not available. The ToolTalk service tries
to restart ttsession if it is not running. This error indicates that
the ToolTalk service is either not installed or not installed
correctly.

TT_ERR_PROCID The process identifier specified is out of date or invalid.

TT_ERR_NOMEM There is not enough memory available to perform the operation.

tttk_message_destroy
The tttk_message_destroy function destroys any message that conforms to the
conventions.

Tt_status tttk_message_destroy(Tt_message msg);

Note: This message can be used in place of the tt_message_destroy message.

The tttk_message_destroy function destroys any patterns that may have been stored on the
message by the ttdt_message_accept or ttdt_subcontract_manage functions and then
passes the message msg to the t t_message_destroy function.

This function returns the value returned by the tt_message_destroy function.

tttk_message_fail
Tt_statustttk_message_fail(

Tt_message msg,

Tt_status status,

const char *status_string,

int destroy

);

The tttk_mesage_fail function fails the message msg and then destroys it.

Note: A program should abandon a message when it does not understand the message
and wants to dispose of it.

A message whose state is TT_SENT can be failed. If the message is a handler–addressed
message, or if it has a tt_message_status of TT_WRN_START_MESSAGE, it can be failed.

This function returns TT_DESKTOP_ENOTSUP.

tttk_message_receive
Tt_statustttk_message_receive(const char*procid);

The tttk_message_receive function calls the tt_message_receive function to retrieve the
next ToolTalk message.

If procid != 0, this function calls

tt_default_procid_set(procid)

52 CDE ToolTalk Messaging Overview

tttk_message_reject
Tt_statustttk_message_reject(

Tt_message msg,

Tt_status status,

const char* status_string,

int destroy};

The tttk_message_reject function rejects the message msg and then destroys it.

Note: A program should abandon a message when it does not understand the message
and wants to dispose of it.

A message whose state is TT_SENT can be rejected. If the message is not a
handler–addressed message, or if it has a tt_message_status other than
TT_WRN_START_MESSAGE, it can be rejected.

This function returns TT_DESKTOP_ENOTSUP.

tttk_op_string
char *tttk_op_string(Tttk_op op};

The tttk_op_string function returns string for the operation op if successful; otherwise, this
function returns zero.

Note: Use the tt_free function to free the string returned.

Tttk_optttk_string_op(const char *opstring);

The tttk_string_op function returns a string containg the operation for the specified string.
On error, this function returns TTDT_OP_NONE.

tttk_Xt_input_handler
void tttk_Xt_input_handler(XtPointer procid,
 i nt * source,
 XtInputId * id);

The tttk_Xt_input_handler function processes ToolTalk events for Xt clients. Use this
function as your Xt input handler unless you expect some messages not to be consumed by
callbacks.

This function passes the procid argument to the tttk_message_receive function
and passes any returned message (that is, messages that are not consumed by callbacks)
to the tttk_message_abandon function.

If this function returns the error TT_ERR_NOMP, the tttk_Xt_input_handler function will
pass the id parameter to the X tRemoveInput function.

Appendix B. The CoEd Demonstartion Program
This section contains the files and source code listing showing the ToolTalk related code for
a ToolTalk demonstration program called CoEd. The CoEd demo program uses the ToolTalk
Desktop Services message set. It illustrates how an editor can use the ToolTalk service to
keep all changes made by the user in sync if multiple instances of the editor are editing the
same file at the same time.

53CDE ToolTalk Messaging Overview

The CoEd Ptype File
The CoEd ptype file, shown in The following example.

ptype DT_CoEd { /* Process type identifier */

 start ”CoEd”;/* Start string */

 handle:/* Receiving process */

/*

 * Display ISO_Latin_1

 */

session Display(in ISO_Latin_1 contents) => start opnum = 1;
/* Signature */

session Display(in ISO_Latin_1 contents,

 in messageID counterfoil) => start opnum =
2;

session Display(in ISO_Latin_1 contents,

 in title docName) => start opnum = 3;

session Display(in ISO_Latin_1 contents,

 in messageID counterfoil,

 in title docName) => start opnum = 4;

/*

 * Edit ISO_Latin_1

 */

sessionEdit(inout ISO_Latin_1 contents) => start opnum = 101;

sessionEdit(inout ISO_Latin_1 contents,

in messageID counterfoil) => start opnum =
102;

sessionEdit(inout ISO_Latin_1 contents,

in title docName) => start opnum = 103;

sessionEdit(inout ISO_Latin_1 contents,

in messageID counterfoil,

in title docName) => start opnum = 104;

/*

 * Compose ISO_Latin_1

 */

sessionEdit(out ISO_Latin_1 contents) => start opnum = 201;

sessionEdit(out ISO_Latin_1 contents,

in messageID counterfoil) => start opnum =
202;

sessionEdit(out ISO_Latin_1 contents,

in title docName) => start opnum = 203;

sessionEdit(out ISO_Latin_1 contents,

54 CDE ToolTalk Messaging Overview

in messageID counterfoil,

in title docName) => start opnum = 204;

/*

 * Open an ISO_Latin_1 buffer

 */

sessionOpen(in ISO_Latin_1 contents,

out bufferID docBuf,

in boolean readOnly) => start opnum
= 400;

sessionOpen(in ISO_Latin_1 contents,

out bufferID docBuf,

in boolean readOnly,

in boolean mapped) => start opnum
= 401;

sessionOpen(in ISO_Latin_1 contents,

out bufferID docBuf,

in boolean readOnly,

in boolean mapped,

in integer shareLevel) => start opnum
= 402;

sessionOpen(in ISO_Latin_1 contents,

out bufferID docBuf,

in boolean readOnly,

in boolean mapped,

in integer shareLevel,

in locator initialPos) => start opnum
= 403;

};

The CoEd.C File
The CoEd.C file, shown in this Code Example, shows the ToolTalk code that needs to be
included in every application to initialize the toolkit, join a ToolTalk session and registering
patterns, and add the ToolTalk service to its event loop.

Note: This file also contains ToolTalk code that is specific to CoEd in its role as an editor
application. This code includes declaring a ptype and processing the start message.

/*

 * CoEd.cc

 *

 * Copyright (c) 1991,1993 by Sun Microsystems.

 */

#include <stdlib.h>

55CDE ToolTalk Messaging Overview

#include <desktop/tttk.h> // Include the ToolTalk messaging
toolkit

#include <CoEd.h>

#include ”CoEditor.h”

#include ”CoEdTextBuffer.h”

XtAppContext myContext;

Widget myTopWidget = 0;

Display *myDpy;

int abortCode = 0;

Tt_pattern *sessPats= 0; // Patterns returned when session
joined

int timeOutFactor = 1000;

int maxBuffers = 1000;

int *pArgc;

char **globalArgv;

const char *ToolName= ”CoEd”;

const char *usage =

”Usage: CoEd [–p01] [–w n] [–t n] [file]\n”

” –p print ToolTalk procid\n”

” –0 do not open an initial composition window\n”

” –1 be a single–buffer editor\n”

” –w sleep for n seconds before coming up\n”

” –t use n as timeout factor, in milliseconds
(default: 1000)\n”

;

void

main(

 int argc,

 char **argv

)

{

 static const char *here = ”main()”;

 int delay = 0;

 int printid = 0;

 int compose = 1;

 char *file = 0;

 OlToolkitInitialize(0);

 XtToolkitInitialize();

 myContext = XtCreateApplicationContext();

 //

56 CDE ToolTalk Messaging Overview

 // This display may get closed, and another opened, inside

 // CoEditor::_init(), if e.g. our parent is on a different
screen

 //

 pArgc = &argc;

 globalArgv = argv;

 myDpy = XtOpenDisplay(myContext, 0, 0, ”CoEd”, 0, 0, &argc,
argv);

int c;

while ((c = getopt(argc, argv, ”p01w:t:”)) != –1) {

switch (c) {

 case ‘p’:

printid = 1;

break;

 case ‘0’:

compose = 0;

break;

case ‘1’:

maxBuffers = 1;

break;

case ‘w’:

delay = atoi(optarg);

break;

 case ‘t’:

timeOutFactor = atoi(optarg);

break;

default:

 fputs(usage, stderr);

exit(1);

}

}

if (optind < argc) {

file = argv[optind];

}

while (delay > 0) {

sleep(1);

delay––;

}

int myTtFd; // Obtain process identifier

57CDE ToolTalk Messaging Overview

// Initialize toolkit and create a ToolTalk communication
endpoint

char *myProcID = ttdt_open(&myTtFd, ToolName, ”SunSoft”, ”%I”, 1
);

// Declare ptype

ttmedia_ptype_declare(”DT_CoEd”, 0, CoEditor::loadISOLatin1_,

 (void *)&myTopWidget, 1);

// Process the message that started us, if any

tttk_Xt_input_handler(0, 0, 0);

if (abortCode != 0) {

// Error in message that caused us to start.

exit(abortCode);

}

if (CoEditor::numEditors == 0) {

// started by hand, not by ToolTalk

if (file == 0) {

if (compose) {

new CoEditor(&myTopWidget);

}

} else {

new CoEditor(&myTopWidget, file);

}

}

//

// If sessPats is unset, then we have not joined the desktop

// session yet. So join it.

//

if (sessPats == 0) {

Widget session_shell = CoEditor::editors[0]–>shell;

if (maxBuffers > 1) {

//

// In multi–window mode, no single window is the

// distinguished window.

//

session_shell = myTopWidget;

}

sessPats = ttdt_session_join(0, 0, session_shell, 0, 1
);

}

58 CDE ToolTalk Messaging Overview

 XtAppAddInput(myContext, myTtFd,
(XtPointer)XtInputReadMask,tttk_Xt_input_handler, myProcID);

XtAppMainLoop(myContext);

}

The Coeditor.C File
The Coeditor.C file, shown in Code Example, shows the ToolTalk code that needs to be
included in every editor application to pass a media callback and reply when a request has
been completed. It also shows other optional ToolTalk functions that can be included in an
editor application.

Note: Ellipses (...) indicates code that has been omitted.

...

CoEditor::CoEditor(

Widget *parent

)

{

_init();

_init(parent);

}

CoEditor::CoEditor(

Widget *parent,

const char *file

)

{

_init();

_init(parent);

_load(file);

}

CoEditor::CoEditor(

Widget *parent,

Tt_message msg,

const char * /*docname*/,

Tt_status &status

)

{

_init();

status = _init(msg);

if (status != TT_OK) {

return;

}

59CDE ToolTalk Messaging Overview

_init(parent);

status = _acceptContract(msg);

}

CoEditor::CoEditor(

Widget *parent,

Tt_message msg,

int /*readOnly*/,

const char *file,

const char * /*docname*/,

Tt_status &status

)

{

_init();

status = _init(msg);

if (status != TT_OK) {

return;

}

_init(parent);

status = _load(file);

if (status != TT_OK) {

return;

}

status = _acceptContract(msg);

}

CoEditor::CoEditor(

 Widget *parent,

Tt_message msg,

int /*readOnly*/,

unsigned char *contents,

int /*len*/,

const char * /*docname*/,

Tt_status &status

)

{

_init();

status = _init(msg);

if (status != TT_OK) {

return;

}

60 CDE ToolTalk Messaging Overview

_init(parent);

XtVaSetValues((Widget)_text,

XtNsourceType, (XtArgVal)OL_STRING_SOURCE,

XtNsource, (XtArgVal)contents,

NULL);

_textBuf = OlTextEditTextBuffer(_text);

RegisterTextBufferUpdate(_textBuf, CoEditor::_textUpdateCB_,

 (caddr_t)this);

status = _acceptContract(msg);

}

CoEditor::~CoEditor()

{

//

// No need for a separate save if we are sending the document

// back in a reply.

//

if (_contract == 0) {

if (_modifiedByMe) {

// we revert before quitting if we don’t want to save

_save();

}

} else {

int len;

char *contents = _contents(&len);

// Reply to media load callback with edited contents of
text

ttmedia_load_reply(_contract, (unsigned char *)contents,

 len, 1);

if (contents != 0) {

XtFree(contents);

}

_contract = 0;

}

numEditors––; // XXX assumes user destroys windows LIFO!

}

Tt_message

CoEditor::loadISOLatin1_(

Tt_message msg,

Tttk_op op,

61CDE ToolTalk Messaging Overview

Tt_status diagnosis,

unsigned char *contents,

int len,

char *file,

char *docname,

void *pWidget

)

{

static const char *here = ”CoEditor::loadISOLatin1_()”;

Tt_status status = TT_OK;

CoEditor *coEditor = 0;

if (diagnosis != TT_OK) {

// toolkit detected an error

if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {

//

// Error is in start message! We now have no

// reason to live, so tell main() to exit().

//

abortCode = 2;

}

// let toolkit handle the error

return msg;

}

if ((op == TTME_COMPOSE) && (file == 0)) {

coEditor = new CoEditor((Widget *)pWidget, msg, docname,

 status);

} else if (len > 0) {

coEditor = new CoEditor((Widget *)pWidget, msg,

 (op == TTME_DISPLAY),

 contents, len, docname, status);

} else if (file != 0) {

coEditor = new CoEditor((Widget *)pWidget, msg,

 (op == TTME_DISPLAY),

 file, docname, status);

} else {

// Fail a message

tttk_message_fail(msg, TT_DESKTOP_ENODATA, 0, 1);

}

tt_free((caddr_t)contents);

62 CDE ToolTalk Messaging Overview

tt_free(file);

tt_free(docname);

return 0;

}

void

CoEditor::_init()

{

_baseFrame = 0;

_controls = 0;

_fileBut = 0;

_editBut = 0;

_scrolledWin = 0;

_text = 0;

_textBuf = 0;

_modifiedByMe = FALSE;

_modifiedByOther= 0;

_contract = 0;

_contractPats = 0;

_filePats = 0;

_file = 0;

_x = INT_MAX;

_y = INT_MAX;

_w = INT_MAX;

_h = INT_MAX;

}

Tt_status

CoEditor::_init(

Tt_message msg

)

{

int width, height, xOffset, yOffset;

width = height = xOffset = yOffset = INT_MAX;

_contract = msg;

ttdt_sender_imprint_on(0, msg, 0, &_w, &_h, &_x, &_y,

10 * timeOutFactor);

return TT_OK;

}

typedef enum {

Open,

63CDE ToolTalk Messaging Overview

Save,

SaveAs,

Revert

} FileOp;

static const char *fileButs[] = {

”Open...”,

”Save”,

”Save as...”,

”Revert”

};

const int numFileButs = sizeof(fileButs) / sizeof(const char *
);

typedef enum {

Undo,

Cut,

Copy,

Paste,

Delete,

SelText,

SelAppt

} EditOp;

static const char *editButs[] = {

”Undo”,

”Cut”,

”Copy”,

”Paste”,

”Delete”,

”Text as ISO_Latin_1”,

”Text as Appointment”

};

const int numEditButs = sizeof(editButs) / sizeof(const char *
);

void

CoEditor::_init(

Widget *parent

)

}

if (*parent == 0) {

if (_contract != 0) {

64 CDE ToolTalk Messaging Overview

//

// Re–open display, since $DISPLAY may have changed by

// ttdt_sender_imprint_on().

//

XtCloseDisplay(myDpy);

myDpy = XtOpenDisplay(myContext, 0, 0, ”CoEd”, 0, 0,

 pArgc, globalArgv);

}

*parent = XtAppCreateShell(0, ”CoEd”,

applicationShellWidgetClass, myDpy, 0, 0);

XtVaSetValues(*parent,

 XtNmappedWhenManaged, False,

 XtNheight, 1,

 XtNwidth, 1,

 0);

XtRealizeWidget(*parent);

}

shell = XtCreatePopupShell(”CoEd”,

applicationShellWidgetClass, *parent, 0, 0);

XtVaSetValues(shell, XtNuserData, this, 0);

// Pop up next to our parent

if ((_x != INT_MAX) && (_y != INT_MAX) && (_w != INT_MAX)) {

// XXX Be smarter about picking a geometry

Dimension x = _x + _w;

Dimension y = _y;

XtVaSetValues(shell, XtNx, x, XtNy, y, 0);

}

XtAddCallback(shell, XtNdestroyCallback, CoEditor::_destroyCB_,

 this);

OlAddCallback(shell, XtNwmProtocol, CoEditor::_wmProtocolCB_,
this);

_baseFrame = XtVaCreateManagedWidget(

”baseFrame”, rubberTileWidgetClass, shell, 0);

_controls = XtVaCreateManagedWidget(”controls”,

controlAreaWidgetClass, _baseFrame,

XtNweight, (XtArgVal)0, 0);

_fileBut = XtVaCreateManagedWidget(”File”,

menuButtonWidgetClass, _controls, 0);

Widget menuPane;

65CDE ToolTalk Messaging Overview

XtVaGetValues(_fileBut, XtNmenuPane, &menuPane, 0);

for (int i = 0; i < numFileButs; i++) {

Widget but = XtVaCreateManagedWidget(fileButs[i],

oblongButtonWidgetClass, menuPane,

XtNuserData, i, 0);

XtAddCallback(but, XtNselect, CoEditor::_fileButsCB_,
this);

}

_editBut = XtVaCreateManagedWidget(”Edit”,

menuButtonWidgetClass, _controls, 0);

XtVaGetValues(_editBut, XtNmenuPane, &menuPane, 0);

for (i = 0; i < numEditButs; i++) {

Widget but = XtVaCreateManagedWidget(editButs[i],

 oblongButtonWidgetClass, menuPane,

 XtNuserData, i, 0);

XtAddCallback(but, XtNselect, CoEditor::_editButsCB_,
this);

}

_scrolledWin = XtVaCreateManagedWidget(

”scrolledWin”, scrolledWindowWidgetClass,

_baseFrame,

XtNforceVerticalSB,(XtArgVal)True,0);

_text = (TextEditWidget)XtVaCreateManagedWidget(

”text”, textEditWidgetClass, _scrolledWin,

0);

XtVaSetValues((Widget)_text, XtNuserData, this, 0);

XtRealizeWidget(shell);

XtPopup(shell, XtGrabNone);

if (numEditors < MaxEditors) {

editors[numEditors] = this;

numEditors++;

}

if (numEditors >= maxBuffers) {

tt_ptype_undeclare(”DT_CoEd”);

}

}

Tt_status

CoEditor::_unload()

{

66 CDE ToolTalk Messaging Overview

Tt_status status = TT_OK;

if (_filePats != 0) {

// Unregister interest in ToolTalk events and destroy
patterns

status = ttdt_file_quit(_filePats, 1);

_filePats = 0;

}

if (_file != 0) {

free(_file);

_file = 0;

}

return status;

}

Tt_status

CoEditor::_load(

const char *file

)

{

int reloading = 1;

if (file != 0) {

if ((_file != 0) && (strcmp(file, _file) != 0)) {

reloading = 0;

_unload();

} else {

_file = strdup(file);

}

}

// Join a file Can be called recursively, below

if (_filePats == 0) {

_filePats = ttdt_file_join(_file, TT_SCOPE_NONE, 1,

 CoEditor::_fileCB_, this);

}

XtVaSetValues((Widget)_text,

XtNsourceType, (XtArgVal)OL_DISK_SOURCE,

XtNsource, (XtArgVal)_file,

NULL);

_textBuf = OlTextEditTextBuffer(_text);

RegisterTextBufferUpdate(_textBuf, CoEditor::_textUpdateCB_,

 (caddr_t)this);

67CDE ToolTalk Messaging Overview

if (_modifiedByMe && reloading) {

ttdt_file_event(_contract, TTDT_REVERTED, _filePats, 1
);

}

_modifiedByMe = 0;

// Does the file have any changes pending?

_modifiedByOther = ttdt_Get_Modified(_contract, _file, TT_BOTH,

 10 * timeOutFactor);

if (_modifiedByOther) {

int choice = userChoice(myContext, _baseFrame,

”Another tool has modifications pending for ”

”this file.\nDo you want to ask it to save ”

”or revert the file?”, 3, ”Save”, ”Revert”,

”Ignore”);

Tt_status status = TT_OK;

switch (choice) {

 case 0:

// Save pending changes

status = ttdt_Save(_contract, _file, TT_BOTH,

 10 * timeOutFactor);

break;

 case 1:

// Revert file to last version

status = ttdt_Revert(_contract, _file, TT_BOTH,

 10 * timeOutFactor);

break;

}

if (status != TT_OK) {

char *s = tt_status_message(status);

userChoice(myContext, _baseFrame, s, 1, ”Okay”);

tt_free(s);

} else if (choice == 0) {

// file was saved, so reload

return _load(0);

} else if (choice == 1) {

// file was reverted

_modifiedByOther = 0;

}

}

68 CDE ToolTalk Messaging Overview

return TT_OK;

}

Tt_status

CoEditor::_load(

unsigned char *contents,

int //len

)

{

_unload();

XtVaSetValues((Widget)_text,

XtNsourceType, (XtArgVal)OL_DISK_SOURCE,

XtNsource, (XtArgVal)contents,

NULL);

_textBuf = OlTextEditTextBuffer(_text);

RegisterTextBufferUpdate(_textBuf, CoEditor::_textUpdateCB_,

 (caddr_t)this);

_modifiedByMe = 0;

_modifiedByOther = 0;

return TT_OK;

}

//

// Caller responsible for reporting any errors to user

//

Tt_status

CoEditor::_save()

{

Tt_status status;

if (_file != 0) {

if (SaveTextBuffer(_textBuf, _file) != SAVE_SUCCESS) {

return TT_DESKTOP_EIO;

}

_modifiedByMe = 0;

_modifiedByOther = 0;

// File has been saved

ttdt_file_event(_contract, TTDT_SAVED, _filePats, 1);

}

if (_contract != 0) {

int len = 0;

char *contents = 0;

69CDE ToolTalk Messaging Overview

if (_file == 0) {

// If you worry that the buffer might be big,

// you could instead try a a temp file to

// transfer the data ”out of band”.

contents = _contents(&len);

}

status = ttmedia_Deposit(_contract, 0, ”ISO_Latin_1”,

 (unsigned char *)contents,

 len, _file, 10 * timeOutFactor);

if (status != TT_OK) {

return status;

}

_modifiedByMe = 0;

_modifiedByOther = 0;

if (contents != 0) {

XtFree(contents);

}

}

return status;

}

Tt_status

CoEditor::_revert() // XXX how about we always just send Revert?
:–)

{

if (! _modifiedByMe) {

return TT_OK;

}

return _load(0); // XXX what if it’s not a file? keep last
deposit

}

void

CoEditor::_destroyCB_(

Widget w,

XtPointer coEditor,

XtPointer call_data

)

{

((CoEditor *)coEditor)–>_destroyCB(w, call_data);

}

70 CDE ToolTalk Messaging Overview

void

CoEditor::_destroyCB(

Widget ,

XtPointer //call_data

)

{

delete this;

}

void

CoEditor::_wmProtocolCB_(

Widget w,

XtPointer coEditor,

XtPointer wmMsg

)

{

((CoEditor *)coEditor)–>_wmProtocolCB(w,
(OlWMProtocolVerify*)wmMsg);

}

void

CoEditor::_wmProtocolCB(

Widget w,

OlWMProtocolVerify *wmMsg

)

{

switch (wmMsg–>msgtype) {

 case OL_WM_DELETE_WINDOW:

if (_modifiedByMe) {

int choice =

userChoice(myContext, _baseFrame,

 ”The text has unsaved changes.”,

 3, ”Save, then Quit”,

 ”Discard, then Quit”,

 ”Cancel”);

switch (choice) {

 case 0:

break;

 case 1:

_revert();

break;

71CDE ToolTalk Messaging Overview

 case 2:

return;

}

}

if (numEditors > 1) {

XtDestroyWidget(shell);

} else {

// XXX OlWmProtocolAction() doesn’t call destructor?!

delete this;

OlWMProtocolAction(w, wmMsg, OL_DEFAULTACTION);

}

break;

 default:

OlWMProtocolAction(w, wmMsg, OL_DEFAULTACTION);

break;

}

}

void

CoEditor::_fileButsCB_(

Widget button,

XtPointer coEditor,

XtPointer call_data

)

{

((CoEditor *)coEditor)–>_fileButsCB(button, call_data);

}

void

CoEditor::_fileButsCB(

Widget button,

XtPointer //call_data

)

{

FileOp op;

XtVaGetValues(button, XtNuserData, &op, 0);

Tt_status status = TT_OK;

switch (op) {

 case Open:

break;

 case Revert:

72 CDE ToolTalk Messaging Overview

status =_revert();

break;

 case Save:

status =_save();

break;

 case SaveAs:

break;

}

if (status != TT_OK) {

_adviseUser(status);

}

}

void

CoEditor::_editButsCB_(

Widget button,

XtPointer coEditor,

XtPointer call_data

)

{

((CoEditor *)coEditor)–>_editButsCB(button, call_data);

}

void

CoEditor::_editButsCB(

Widget button,

XtPointer //call_data

)

{

EditOp op;

XtVaGetValues(button, XtNuserData, &op, 0);

Tt_status status = TT_OK;

switch (op) {

int len;

char *contents;

const char *mediaType;

Tt_message msg;

Tt_pattern *pats;

 case SelText:

 case SelAppt:

if (op == SelText) {

73CDE ToolTalk Messaging Overview

mediaType = ”ISO_Latin_1”;

} else {

mediaType = ”DT_CM_Appointment”;

}

//contents = _selection(&len);

contents = _contents(&len);

if (len <= 0) {

return;

}

// Media load callback

msg = ttmedia_load(_contract, CoEditor::_mediaLoadMsgCB_,

 this, TTME_EDIT, mediaType,

 (unsigned char *)contents, len, 0, 0, 1);

if (contents != 0) {

XtFree(contents);

}

status = tt_ptr_error(msg);

if (status != TT_OK) {

break;

}

pats = ttdt_subcontract_manage(msg, 0, shell, this);

status = tt_ptr_error(pats);

if (status != TT_OK) {

break;

}

break;

}

if (status != TT_OK) {

char *s = tt_status_message(status);

char buf[1024];

sprintf(buf, ”%d: %s”, status, s);

tt_free(s);

userChoice(myContext, _baseFrame, buf, 1, ”Okay”);

}

}

char *

CoEditor::_contents(

int *len

)

74 CDE ToolTalk Messaging Overview

{

_textBuf = OlTextEditTextBuffer(_text);

TextLocation start = { 0, 0, 0 };

TextLocation end = LastTextBufferLocation(_textBuf);

char *contents = GetTextBufferBlock(_textBuf, start, end
);

*len = 0;

if (contents != 0) {

*len = strlen(contents);

}

return contents;

}

Tt_status

CoEditor::_acceptContract(

Tt_message msg

)

{

static const char *here = ”CoEditor::_acceptContract()”;

_contract = msg;

if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {

//

// Join session before accepting start message,

// to prevent unnecessary starts of our ptype

//

Widget session_shell = shell;

if (maxBuffers > 1) {

//

// If we are in multi–window mode, just use

// our unmapped toplevel shell as our session

// shell, since we do not know if any particular

// window will exist the whole time we are in

// the session.

//

session_shell = XtParent(shell);

}

// Join the session and register patterns and callbacks

sessPats = ttdt_session_join(0, 0, session_shell, this, 1);

}

// Accept responsibility to handle a request

75CDE ToolTalk Messaging Overview

_contractPats = ttdt_message_accept(

msg, CoEditor::_contractCB_, shell, this,

1, 1);

Tt_status status = tt_ptr_error(_contractPats);

if (status != TT_OK) {

return status;

}

return status;

}

Tt_message

CoEditor::_contractCB_(

Tt_message , //msg,

Tttk_op , //op,

Widget , //shell,

void *, //coEditor,

Tt_message //Contract

)

{

return 0;

}

void

CoEditor::_editButCB_(

Widget w,

XtPointer coEditor,

XtPointer call_data

)

{

((CoEditor *)coEditor)–>_editButCB(w, call_data);

}

void

CoEditor::_editButCB(

Widget ,

XtPointer //call_data

)

{

int len;

char *contents = _contents(&len);

// Media Load Callback

76 CDE ToolTalk Messaging Overview

Tt_message msg = ttmedia_load(_contract,
CoEditor::_mediaLoadMsgCB_,

 this, TTME_EDIT, ”ISO_Latin_1”,

 (unsigned char *)contents,

 len, 0, 0, 1);

if (contents != 0) {

XtFree(contents);

}

Tt_pattern *pats = ttdt_subcontract_manage(msg, 0, shell, this
);

}

Tt_message

CoEditor::_mediaLoadMsgCB_(

Tt_message msg,

Tttk_op op,

unsigned char *contents,

int len,

char *file,

void *clientData

)

{

return ((CoEditor *)clientData)–>_mediaLoadMsgCB(msg, op,

contents, len, file);

}

Tt_message

CoEditor::_mediaLoadMsgCB(

Tt_message msg,

Tttk_op,

unsigned char *contents,

int len,

char *file

)

{

if (len > 0) {

XtVaSetValues((Widget)_text,

XtNsourceType, (XtArgVal)OL_STRING_SOURCE,

XtNsource, (XtArgVal)contents,

NULL);

_textBuf = OlTextEditTextBuffer(_text);

77CDE ToolTalk Messaging Overview

RegisterTextBufferUpdate(_textBuf, CoEditor::_textUpdateCB_,

 (caddr_t)this);

// ReplaceBlockInTextBuffer

} else if (file != 0) {

}

tt_message_destroy(msg);

return 0;

}

void

CoEditor::_textUpdateCB_(

XtPointer coEditor,

XtPointer pTextBuffer,

EditResult status

)

{

if (coEditor == 0) {

return;

}

((CoEditor *)coEditor)–>_textUpdateCB((TextBuffer *)pTextBuffer,

 status);

}

void

CoEditor::_textUpdateCB(

TextBuffer *textBuf,

EditResult //editStatus

)

{

//Tt_status status;

if (_textBuf != textBuf) {

fprintf(stderr, ”_textBuf != textBuf”);

}

if ((! _modifiedByMe) && TextBufferModified(_textBuf)) {

_modifiedByMe = TRUE;

// File has changes pending

ttdt_file_event(_contract, TTDT_MODIFIED, _filePats, 1);

}

}

Tt_message

CoEditor::_fileCB_(

78 CDE ToolTalk Messaging Overview

Tt_message msg,

Tttk_op op,

char *pathname,

void *coEditor,

int trust,

int me

)

{

tt_free(pathname);

if (coEditor == 0) {

return msg;

}

return ((CoEditor *)coEditor)–>_fileCB(msg, op, pathname,

trust, me);

}

Tt_message

CoEditor::_fileCB(

Tt_message msg,

Tttk_op op,

char *pathname,

int, //trust

int //me

)

{

tt_free(pathname);

Tt_status status = TT_OK;

switch (op) {

 case TTDT_MODIFIED:

if (_modifiedByMe) {

// Hmm, the other editor either doesn’t know or

// doesn’t care that we are already modifying the

// file, so the last saver will win.

// XXX Or: a race condition has arisen!

} else {

// Interrogate user if she ever modifies the buffer

_modifiedByOther = 1;

XtAddCallback((Widget)_text, XtNmodifyVerification,

(XtCallbackProc)CoEditor::_textModifyCB_, 0);

}

79CDE ToolTalk Messaging Overview

break;

 case TTDT_GET_MODIFIED:

tt_message_arg_ival_set(msg, 1, modifiedByMe);

tt_message_reply(msg);

break;

 case TTDT_SAVE:

status = _save();

if (status == TT_OK) {

tt_message_reply(msg);

} else {

// Fail message

tttk_message_fail(msg, status, 0, 0);

}

break;

 case TTDT_REVERT:

status = _revert();

if (status == TT_OK) {

tt_message_reply(msg);

} else {

// Fail message

tttk_message_fail(msg, status, 0, 0);

}

break;

 case TTDT_REVERTED:

 case TTDT_SAVED:

 case TTDT_MOVED:

 case TTDT_DELETED:

printf(”CoEditor::_fileCB(): %s\n”, tttk_op_string(op));

break;

}

tt_message_destroy(msg);

return 0;

}

void

CoEditor::_textModifyCB_(

TextEditWidget text,

XtPointer ,

OlTextModifyCallData *mod

)

80 CDE ToolTalk Messaging Overview

{

CoEditor *coEditor = 0;

XtVaGetValues((Widget)text, XtNuserData, &coEditor, 0);

if (coEditor == 0) {

return;

}

coEditor–>_textModifyCB(mod);

}

void

CoEditor::_textModifyCB(

OlTextModifyCallData *mod

)

{

if (_modifiedByOther != 1) {

return;

}

int cancel = userChoice(myContext, _baseFrame,

 ”Another tool has modifications pending for this file.\n”

 ”Are you sure you want to start modifying the file?”,

 2, ”Modify”, ”Cancel”);

if (cancel) {

mod–>ok = FALSE;

}

_modifiedByOther = 2;

}

void

CoEditor::_adviseUser(

Tt_status status

}

{

char *s = tt_status_message(status);

char buf[1024];

sprintf(buf, ”%d: %s”, status, s);

tt_free(s);

userChoice(myContext, _baseFrame, buf, 1, ”Okay”);

}

81CDE ToolTalk Messaging Overview

Appendix C. New ToolTalk Functions
This chapter describes ToolTalk functions that are new for this release. To use these
functions, you need to include the ToolTalk header file:

#include <Tt/tt_c.h>

tt_error
void tt_error(const char *funcname, Tt_status status)

The tt_error function is a publicly–known null function. This function is called by the ToolTalk
library just before it returns from any ToolTalk API call that has a status other than TT_OK.
The name of the function that is about to return and the status code is passed. You can use
this call to set a dbx breakpoint in tt_error to quickly catch and trace back any ToolTalk
errors. You can also interpose this function, for example, to log ToolTalk errors to stderr .
The following code example shows how an application might do this.

void tt_error(const char *funcname, Tt_status status) {
 fprintf(stderr, ”ToolTalk function %s returned %s.\n”,

funcname, tt_status_message(status));
}

tt_file_netfile
char * tt_file_netfile(const char * filename);

The tt_file_netfile function maps between local and canonical path names. It converts the
file specified in filename to a netfilename that can be passed to other hosts on the
network. The filename is an absolute or relative path name that is valid on the local host.
The last component of filename is not required; however, every other component of
filename must exist.

Note: You do not need to call the tt_open function before you use this function.

This function returns either an error pointer or, if successful, a newly–allocated
null–terminated string of an unspecified format, which may be passed to the tt_netfile_file
function.

Use tt_ptr_error to extract a status from an error pointer. Possible errors are described in
the following table.

 Possible Errors Returned by tt_file_netfile

Error Description

TT_ERR_PATH filename is a path that is not valid on this host

TT_ERR_DBAVAIL rpc.ttdbserverd could not be reached on host

TT_ERR_DBEXIST rpc.ttdbserverd does not appear to be properly installed on host

To free allocated strings, use either the tt_free or tt_release call.

To convert the file back to a local file name for the same file, use the tt_netfile_file function.

tt_host_file_netfile
char * tt_host_file_netfile(const char * host,

 const char * filename);

82 CDE ToolTalk Messaging Overview

The tt_host_file_netfile function maps between local and canonical path names on a remote
host. It converts the file specified in host to a netfilename that can be passed to
other hosts on the network. The filename is an absolute or relative path name that is
valid on the remote host. The last component of filename is not required; however, every
other component of filename must exist.

Note: You do not need to call the tt_open function before you use this function.

This function returns either an error pointer or, if successful, a newly–allocated
null–terminated string of an unspecified format, which may be passed to the tt_netfile_file
function.

Use tt_ptr_error to extract a status from an error pointer. Possible errors are described in
the following table.

 Possible Errors Returned by tt_host_file_netfile

Error Description

TT_ERR_PATH filename is a path that is not valid on the
remote host

TT_ERR_DBAVAIL rpc.ttdbserverd could not be reached on host

TT_ERR_DBEXIST rpc.ttdbserverd does not appear to be properly installed on host

TT_ERR_UNIMP rpc.ttdbserverd version does not support the tt_host_file_netfile
function

• To free allocated strings, use either the tt_free or tt_release call.

To convert the file back to a local file name for the same file, use the tt_host_netfile_file
function.

tt_host_netfile_file
char * tt_host_netfile_file(const char * host,

 const char * netfilename);

The tt_host_file_netfile function maps between local and canonical path names on the
remote host. It converts the file specified netfilename to a path namethat is valid on the
remote host. The netfilename is a copy of a null–terminated string returned by the
tt_netfile_file function.

Note: You do not need to call the tt_open function before you use this function.

If the specified file is not currently mounted on the local host, a path name in the form of

/DTMOUNTPOINT/host/filepath

is constructed, where:

DTMOUNTPOINT is the intended mount point for the automounter’s host map. You can also
specify this mount point with the environment variable DTMOUNTPOINT.

host is the host that contains the file.

filepath is the path to the file contained on the host.

This function returns either an error pointer or, if successful, a newly–allocated
null–terminated local file name.

83CDE ToolTalk Messaging Overview

Use tt_ptr_error to extract a status from an error pointer. Possible errors are described in
The following table.

 Possible Errors Returned by tt_host_netfile_file

Errors Description

TT_ERR_PATH netfilename is not a valid netfilename

TT_ERR_DBAVAIL rpc.ttdbserverd could not be reached on host

TT_ERR_DBEXIST rpc.ttdbserverd does not appear to be properly installed on host

TT_ERR_UNIMP rpc.ttdbserverd version does not support the tt_host_netfile_file
function

To free allocated strings, use either the tt_free or tt_release call.

To convert the file back to a local file name for the same file, use the tt_host_file_netfile
function.

tt_message_print
char * tt_message_print(Tt_message m);

The tt_message_print function allows you to print out messages that are received by not
understood.

To free allocated strings, use either the tt_free or tt_release call.

This function returns either the error TT_ERR_POINTER or, if successful, the message m in
a buffer allocated by ToolTalk (in the same manner as is done in other ToolTalk API calls
such as tt_X_session).

tt_netfile_file
char * tt_netfile_file(const char * netfilename);

The tt_netfile_file function maps between canonical and local path names. It converts the
file specified netfilename to a path name that is valid on the local host. The
netfilename is a copy of a null–terminated string returned by tt_netfile_file.

Note: You do not need to call the tt_open function before you use this function.

If the specified file is not currently mounted on the local host, a path name in the form of

/DTMOUNTPOINT/host/filepath

is constructed, where:

DTMOUNTPOINT is the intended mount point for the automounter’s host map. You can also
specify this mount point with the environment variable DTMOUNTPOINT.

host is the host that contains the file.

filepath is the path to the file contained on the host.

This function returns either an error pointer or, if successful, a newly–allocated
null–terminated local file name.

Use tt_ptr_error to extract a status from an error pointer. Possible errors are described in
the following table.

84 CDE ToolTalk Messaging Overview

 Possible Errors Returned by tt_netfile_file

Error Description

TT_ERR_PATH netfilename is not a valid netfilename

TT_ERR_DBAVAIL rpc.ttdbserverd could not be reached on host

TT_ERR_DBEXIST rpc.ttdbserverd does not appear to be properly installed on host

To free allocated strings, use either the tt_free or tt_release call.

To convert the file back to a net file name for the same file, use the tt_file_netfile function.

tt_pattern_print
char * tt_message_print(Tt_pattern p);

The tt_pattern_print function allows you to print out patterns.

To free allocated strings, use either the tt_free or tt_release call.

This function returns either the error TT_ERR_POINTER or, if successful, the pattern p in a
buffer allocated by ToolTalk (in the same manner as is done in other ToolTalk API calls such
as tt_X_session).

Appendix D. Examples

Example Ttdt_contract_cb
The following example is an example of a typical algorithm of a Ttdt_contract_cb callback
for an application that handles its own Pause/Resume/Quit requests but allows the toolkit to
handle the X11–related requests.

Note: This example callback deals with the case when the contract parameter has a value
other than zero and can, therefore, also be used as the Ttdt_contract_cb callback
passed to ttdt_message_accept.

Tt_message

myContractCB(

 Tt_message msg,

 void *clientdata,

 Tt_message contract

)

{

 char *opString = tt_message_op(msg);

 Tttk_op op = tttk_string_op(opString);

 tt_free(opString);

 int silent = 0;

 int force = 0;

 Boolean cancel = False;

85CDE ToolTalk Messaging Overview

 Boolean sensitive = True;

 char *status, command;

 switch (op) {

 case TTDT_QUIT:

 tt_message_arg_ival(msg, 0, &silent);

 tt_message_arg_ival(msg, 1, &force);

 if (contract == 0) {

 /* Quit entire application */

 cancel = ! myQuitWholeApp(silent, force
);

 } else {

 /* Quit just the specified request being
worked on */

 cancel = ! myCancelThisRequest(contract,
silent, force);

 }

 if (cancel) {

 /* User canceled Quit; fail the Quit
request */

 tttk_message_fail(msg,
TT_DESKTOP_ECANCELED, 0, 1);

 } else {

 tt_message_reply(msg);

 tttk_message_destroy(msg);

 }

 return 0;

 case TTDT_PAUSE:

 sensitive = False;

 case TTDT_RESUME:

 if (contract == 0) {

 int already = 1;

 if (XtIsSensitive(myTopShell) !=
sensitive) {

 already = 0;

 XtSetSensitive(myTopShell,
sensitive);

 }

 if (already) {

tt_message_status_set(msg,TT_DESKTOP_EALREADY);

 }

86 CDE ToolTalk Messaging Overview

 } else {

 if (XtIsSensitive(thisShell) ==
sensitive) {

tt_message_status_set(msg,TT_DESKTOP_EALREADY);

 } else {

 XtSetSensitive(thisShell,
sensitive);

 }

 }

 tt_message_reply(msg);

 tttk_message_destroy(msg);

 return 0;

 case TTDT_GET_STATUS:

 if (contract == 0) {

 status = ”Message about status of entire
app”;

 } else {

 status = ”Message about status of this
request”;

 }

 tt_message_arg_val_set(msg, 0, status);

 tt_message_reply(msg);

 tttk_message_destroy(msg);

 return 0;

 case TTDT_DO_COMMAND:

 if (! haveExtensionLanguage) {

 tttk_message_fail(msg,
TT_DESKTOP_ENOTSUP, 0, 1);

 return 0;

 }

 command = tt_message_arg_val(msg, 0);

 result = myEval(command);

 tt_free(command);

 tt_message_status_set(msg, result);

 if (tt_is_err(result)) {

 tttk_message_fail(msg, result, 0, 1);

 } else {

 tt_message_reply(msg);

 tttk_message_destroy(msg);

 }

87CDE ToolTalk Messaging Overview

 return 0;

 }

 /* Unrecognized message; do not consume it */

 return msg;

}

Example Ttdt_file_cb
The following example is an example of a typical algorithm of this callback.

Tt_message

myFileCB(

 Tt_message msg,

 Tttk_op op,

 char *pathname,

 int trust,

 int isMe

)

{

 tt_free(pathname);

 Tt_status status = TT_OK;

 switch (op) {

 case TTDT_MODIFIED:

 if ((_modifiedByMe) && (! isMe)) {

 // Hmm, the other editor either does not
know or

 // does not care that we are already
modifying the

 // file, so the last saver will win.

 } else {

 // Interrogate user if she ever modifies
the buffer

 _modifiedByOther = 1;

 XtAddCallback(myTextWidget,
XmNmodifyVerifyCallback,

 myTextModifyCB, 0);

 }

 break;

 case TTDT_GET_MODIFIED:

 tt_message_arg_ival_set(msg, 1, _modifiedByMe);

 tt_message_reply(msg);

 break;

 case TTDT_SAVE:

88 CDE ToolTalk Messaging Overview

 status = mySave(trust);

 if (status == TT_OK) {

 tt_message_reply(msg);

 } else {

 tttk_message_fail(msg, status, 0, 0);

 }

 break;

 case TTDT_REVERT:

 status = myRevert(trust);

 if (status == TT_OK) {

 tt_message_reply(msg);

 } else {

 tttk_message_fail(msg, status, 0, 0);

 }

 break;

 case TTDT_REVERTED:

 if (! isMe) {

 _modifiedByOther = 0;

 }

 break;

 case TTDT_SAVED:

 if (! isMe) {

 _modifiedByOther = 0;

 int choice = myUserChoice(myContext,
myBaseFrame,

 ”Another tool
has saved ”

 ”this file.”, 2,
”Ignore”,

 ”Revert”);

 switch (choice) {

 case 1:

 myRevert(1);

 break;

 }

 }

 break;

 case TTDT_MOVED:

 case TTDT_DELETED:

 // Do something appropriate

89CDE ToolTalk Messaging Overview

 break;

 }

 tttk_message_destroy(msg);

 return 0;

}

Example Ttmedia_load_msg_cb
The following example is an example of a typical algorithm of this callback.

Tt_message

myLoadMsgCB(

Tt_message msg,

void *clientData,

Tttk_op op,

unsigned char *contents,

int len,

char *file

)

{

if (len > 0) {

// Replace data with len bytes in contents

} else if (file != 0) {

// Replace data with data read from file

}

if (op == TTME_DEPOSIT) {

tt_message_reply(msg);

}

tttk_message_destroy(msg);

return 0;

}

Example Ttmedia_load_pat_cb
The following example is an example of a typical algorithm of this callback.

Tt_message

myAcmeSheetLoadCB(

 Tt_message msg,

 void *client_data,

 Tttk_op op,

 Tt_status diagnosis,

 unsigned char *contents,

 int len,

90 CDE ToolTalk Messaging Overview

 char *file,

 char *docname

)

{

 Tt_status status = TT_OK;

 if (diagnosis != TT_OK) {

 // toolkit detected an error

 if (tt_message_status(msg) ==
TT_WRN_START_MESSAGE) {

 //

 // Error is in start message! We now
have no

 // reason to live, so tell main() to
exit().

 //

 myAbortCode = 2;

 }

 // let toolkit handle the error

 return msg;

 }

 if ((op == TTME_COMPOSE) && (file == 0)) {

 // open empty new buffer

 } else if (len > 0) {

 // load contents into new buffer

 } else if (file != 0) {

 if (ttdt_Get_Modified(msg, file, TT_BOTH,
myCntxt, 5000)) {

 switch (myUserChoice(”Save, Revert,
Ignore?”)) {

 case 0:

 ttdt_Save(msg, file, TT_BOTH,
myCntxt, 5000);

 break;

 case 1:

 ttdt_Revert(msg, file, TT_BOTH,
myCntxt, 5000);

 break;

 }

 }

 // load file into new buffer

 } else {

91CDE ToolTalk Messaging Overview

 tttk_message_fail(msg, TT_DESKTOP_ENODATA, 0, 1
);

 tt_free(contents); tt_free(file); tt_free(
docname);

 return 0;

 }

 int w, h, x, y = INT_MAX;

 ttdt_sender_imprint_on(0, msg, 0, &w, &h, &x, &y,
myCntxt, 5000);

 positionMyWindowRelativeTo(w, h, x, y);

 if (maxBuffersAreNowOpen) {

 // Un–volunteer to handle future requests until
less busy

 tt_ptype_undeclare(”Acme_Calc”);

 }

 if (tt_message_status(msg) == TT_WRN_START_MESSAGE) {

 //

 // Join session before accepting start message,

 // to prevent unnecessary starts of our ptype

 //

 ttdt_session_join(0, myContractCB, myShell, 0, 1
);

 }

 ttdt_message_accept(msg, myContractCB, myShell, 0, 1, 1
);

 tt_free(contents); tt_free(file); tt_free(docname);

 return 0;

}

Example Ptype Signature for Ttmedia_ptype_declare Function
The following example is an example of the signature layout of a media ptype.

ptype Acme_Calc {

 start ”acalc”;

 handle:

 /*

 * Display Acme_Sheet

 * Include in tool’s ptype if tool can display a
document.

 */

 session Display(in Acme_Sheet contents) =>
start opnum = 1;

 session Display(in Acme_Sheet contents,

92 CDE ToolTalk Messaging Overview

 in messageID counterfoil) =>
start opnum = 2;

 session Display(in Acme_Sheet contents,

 in title docName) =>
start opnum = 3;

 session Display(in Acme_Sheet contents,

 in messageID counterfoil,

 in title docName) =>
start opnum = 4;

 /*

 * Edit Acme_Sheet

 * Include in tool’s ptype if tool can edit a document.

 */

 session Edit(inout Acme_Sheet contents) =>
start opnum = 101;

 session Edit(inout Acme_Sheet contents,

 in messageID counterfoil) =>
start opnum = 102;

 session Edit(inout Acme_Sheet contents,

 in title docName) =>
start opnum = 103;

 session Edit(inout Acme_Sheet contents,

 in messageID counterfoil,

 in title docName) =>
start opnum = 104;

 /*

 * Compose Acme_Sheet

 * Include in tool’s ptype if tool can compose a document
from scratch.

 */

 session Edit(out Acme_Sheet contents) =>
start opnum = 201;

 session Edit(out Acme_Sheet contents,

 in messageID counterfoil) =>
start opnum = 202;

 session Edit(out Acme_Sheet contents,

 in title docName) =>
start opnum = 203;

 session Edit(out Acme_Sheet contents,

 in messageID counterfoil,

 in title docName) =>
start opnum = 204;

 /*

93CDE ToolTalk Messaging Overview

 * Mail Acme_Sheet

 * Include in tool’s ptype if tool can mail a document.

 */

 session Mail(in Acme_Sheet contents) =>
start opnum = 301;

 session Mail(inout Acme_Sheet contents) =>
start opnum = 311;

 session Mail(inout Acme_Sheet contents,

 in title docName) => start
opnum = 313;

 session Mail(out Acme_Sheet contents) =>
start opnum = 321;

 session Mail(out Acme_Sheet contents,

 in messageID counterfoil) =>
start opnum = 323;

};

Example for Xt Input Handler Function
The following example is an example for the Xt input handler function.

int myTtFd;
char *myProcID;
myProcID = ttdt_open(&myTtFd, ”WhizzyCalc”, ”Acme”, ”1.0”, 1);
/* ... */
/* Process the message that started us, if any */
tttk_Xt_input_handler(myProcID, 0, 0);
/* ... */
XtAppAddInput(myContext, myTtFd, (XtPointer)XtInputReadMask,
tttk_Xt_input_handler, myProcID);

X-94 CDE ToolTalk Messaging Overview

Symbols
$DISPLAY, 40
$DT_TT_TRACE_SCRIPT, 18
–ltt option, 8
–t option, of ttsnoop command, 16
/usr/dt/bin/ttsnoop, 16

A
addressing messages, methods of, 6
application integration, 11
application programming interface (API), 7
automatic invocation, 2

C
client mode, 18
CoEd demo program, 52
CoEd.C file, 53, 54
Coeditor.C file, 58
CoEditor.h file, 8
Compose request, 46
control integration, 2
Created notice, 31

D
Deleted notice, 30, 31
demostration programs, CoEd, 52
Deposit request, 46
Desktop Services Message Set, 3
determining who receive messages, 7
Display request, 46
distributed object system, 2
Do_Command request, 42
Document and Media Exchange Message Set, 4
DTMOUNTPOINT, 82, 83

E
Edit request, 46
ENV_, 29, 46
environ(5), 37
environment variables

 $DT_TT_TRACE_SCRIPT, 18
$DISPLAY, 40
DTMOUNTPOINT, 82, 83

error messages
TT_DESKTOP, 49
TT_DESKTOP_EINVAL, 29, 32
TT_DESKTOP_ENOTSUP, 35, 36, 41, 42
TT_DESKTOP_EPROTO, 38, 39
TT_DESKTOP_ETIMEOUT, 38, 39, 40, 45
TT_ERR_DBAVAIL, 31, 32, 34, 38, 39, 45
TT_ERR_DBEXIST, 31, 32, 34, 38, 39, 45
TT_ERR_EINVAL, 44
TT_ERR_NOMEM, 31, 32, 33, 38, 39, 40, 43,

44, 45, 47, 51
TT_ERR_NOMP, 29, 31, 32, 33, 37, 38, 39,

40, 43, 44, 45, 47, 49, 50, 51, 52
TT_ERR_NOTHANDLER, 47, 50
TT_ERR_NUM, 47

TT_ERR_OVERFLOW, 29, 32, 33, 38, 39, 40,
45, 47

TT_ERR_PATH, 31
TT_ERR_POINTER, 29, 32, 34, 37, 38, 39, 43,

44, 45, 49, 50
TT_ERR_PROCID, 32, 33, 38, 39, 40, 43, 44,

45, 47, 49, 51
TT_ERR_PTYPE, 49
TT_ERR_SESSION, 43
TT_ERR_UNIMP, 37

errors returned
TT_ERR_APPFIRST + EACCES, 20
TT_ERR_APPFIRST + EEXIST, 20
TT_ERR_APPFIRST + EISDIR, 20
TT_ERR_APPFIRST + ENOSPC, 20
TT_ERR_DBAVAIL, 81, 82, 83, 84
TT_ERR_DBEXIST, 81, 82, 83, 84
TT_ERR_NO_MATCH, 19
TT_ERR_PATH, 81, 82, 83, 84
TT_ERR_UNIMP, 82, 83

event, defined, 9

F
features, of ToolTalk, 6
file scoping, restrictions, 7
filepath, 82, 83
files

CoEd.C, 53, 54
Coeditor.C, 58
CoEditor.h, 8
Messaging Toolkit header, 8
ToolTalk concept of, 7
ToolTalk header, 8, 81
ToolTalk messaging toolkit header, 28

G
Get_Environment request, 41
Get_Geometry request, 35, 40, 41, 44
Get_Iconified request, 35, 41
Get_Locale request, 41
Get_Mapped request, 35, 41
Get_Modified request, 29, 34
Get_Situation request, 41
Get_Status request, 36, 42
Get_Sysinfo request, 41
Get_XInfo request, 36, 41, 44

H
host, 82, 83
how applications use ToolTalk messages, 5

I
inter–operability problems, solved by the ToolTalk

service, 1

L
libraries, ToolTalk, 8
libtt, 18

X-95Index

Lower request, 35, 41

M
Makefile, changes to your applicationÕs, 8
mapping, between canonical and local pathnames,

83
mapping, between local and canonical pathnames,

81, 82
merging compiled ToolTalk type files into running

ttsession, 12
merging type information, 12
message patterns, 6
message protocol, 7
message sets, toolkit, 34, 36

ttdt_close, 28
ttdt_contract_cb, 42
ttdt_file_event, 28, 31
ttdt_file_join, 29, 32
ttdt_file_notice, 31
ttdt_file_quit, 30, 32
ttdt_file_request, 33
ttdt_Get_Modified, 34
ttdt_open, 37
ttdt_Revert, 37
ttdt_Save, 38
ttdt_sender_imprint_on, 39
ttdt_session_join, 40
ttdt_session_quit, 42, 43, 44
ttdt_subcontract_manage, 43, 46
ttmedia_Deposit, 44
ttmedia_load, 45, 46
ttmedia_load_reply, 47
ttmedia_ptype_declare, 48
tttk_block_while, 34, 38, 39, 40, 49
tttk_message_abandon, 50
tttk_message_create, 50
tttk_message_destroy, 51
tttk_message_fail, 51
tttk_message_receive, 51
tttk_message_reject, 51, 52
tttk_op_string, 52
tttk_patterns_destroy, 36
tttk_Xt_input_handler, 52

messages
 observing, 6
determining recipients of, 6
handling, 6
methods of addressing, 6
object–oriented, 6
process–oriented, 6
receiving, 6
sending, 5

Messaging Toolkit header file, 8
messaging toolkit, incorporating, 8
Modified notice, 29, 30, 31
modifying your application to use the ToolTalk

service, 7
Moved notice, 30, 31

N
netfilename, 81, 82, 83
network–transparent events, 2
notice, 9

O
object–oriented messages, 6
objects, persistent, 2
OMG–compliant systems, 2, 7
operation, defined, 9

P
pathname, 82, 83
Pause request, 36, 42
plug–and–play, 2
process type (ptype), 3, 11
process–oriented messages, 6
process–type identifier (ptid), 11
procid, 12
ptype file, example, 11
ptype, installing, 12
ptypes, check for existing, 12
ptypes, for tools bundled with this release, 11
ptypes, for tools not included in this release, 11
ptypes, merging, 12

Q
Quit request, 36, 42

R
Raise request, 35, 41
receiving ToolTalk messages, 6
recipients, 5
request, 9
requests, identifying, 9
Resume request, 36, 42
Revert request, 29, 37
Reverted notice, 29, 30, 31
rpc.ttdbserverd, 81

S
Save request, 29, 38
Saved notice, 29, 30, 31
scenarios illustrating the ToolTalk service in use, 2
senders, 5
sending ToolTalk messages, 5
server mode, 18
session identifier (sessid), 7
session, ToolTalk concept of, 7
Session_Trace request, 18
Set_Environment request, 41
Set_Geometry request, 35, 41
Set_Iconified request, 35
Set_Locale request, 41
Set_Mapped request, 35, 41
Set_Situation request, 41

X-96 CDE ToolTalk Messaging Overview

Set_XInfo request, 36, 42
Signal request, 41
signatures, 11
start string, 11
Started notice, 37
static message patterns, 11
Status notice, 44
Stopped notice, 28

T
t_message_id, 46
tdt_Get_Modified, 33
toolkit messages

ttdt_close, 28
ttdt_contract_cb, 42
ttdt_file_event, 28, 31
ttdt_file_join, 29, 32
ttdt_file_notice, 31
ttdt_file_quit, 30, 32
ttdt_file_request, 33
ttdt_Get_Modified, 34
ttdt_message_accept, 34
ttdt_open, 36, 37
ttdt_Revert, 37
ttdt_Save, 38
ttdt_sender_imprint_on , 39
ttdt_session_join, 40
ttdt_session_quit, 42, 43, 44
ttdt_subcontract_manage, 43, 46
ttmedia_Deposit, 44
ttmedia_load, 45, 46
ttmedia_load_reply, 47
ttmedia_ptype_declare, 48
tttk_block_while, 34, 38, 39, 40, 49
tttk_message_abandon, 50
tttk_message_create, 50
tttk_message_destroy, 51
tttk_message_fail, 51
tttk_message_receive, 51
tttk_message_reject, 51, 52
tttk_op_string, 52
tttk_patterns_destroy, 36
tttk_Xt_input_handler, 52

ToolTalk commands, tttrace, 18
ToolTalk functions

tt_close, 28
tt_default_procid_set, 28
tt_file_netfile, 84
tt_free, 30, 37, 40, 46, 49, 81, 82, 83, 84
tt_netfile_file, 82
tt_open, 37, 81, 82, 83
tt_ptr_error, 81, 82, 83
tt_release, 81, 82, 83, 84
tt_X_session, 83, 84
tttrace, 20

ToolTalk functions, new
tt_error, 81
tt_file_netfile, 81
tt_host_file_netfile, 81

tt_host_netfile_file, 82
tt_message_print, 83
tt_netfile_file, 81, 82, 83
tt_pattern_print, 84

ToolTalk header file, 8, 81
ToolTalk libraries, 8
ToolTalk message sets

Desktop, 3
Document and Media Exchange, 4

ToolTalk messages, 5
ToolTalk messaging toolkit header file, 28
ToolTalk service, 1
ToolTalk type compiler, 11, 12
ToolTalk Types Databas, 11
truss command, 18
TT_BOTH, 30, 34, 37, 38
tt_close function, 28
tt_default_procid_set function, 28
tt_default_procid_set(new_procid), 28
tt_default_procid_set(procid), 28
TT_DESKTOP_EINVAL, 29, 32
TT_DESKTOP_ENODATA, 49
TT_DESKTOP_ENOTSUP, 35, 36, 41, 42
TT_DESKTOP_ETIMEDOUT, 40
TT_DESKTOP_ETIMEOUT, 38, 39, 45
TT_DESKTOP_ETPROTO, 38, 39
TT_ERR_APPFIRST + EACCES, 20
TT_ERR_APPFIRST + EEXIST, 20
TT_ERR_APPFIRST + EISDIR, 20
TT_ERR_APPFIRST + ENOSPC, 20
TT_ERR_DBAVAIL, 31, 32, 34, 38, 39, 45, 81, 82,

83, 84
TT_ERR_DBEXIST, 31, 32, 34, 38, 39, 45, 81, 82,

83, 84
TT_ERR_EINVAL, 44
TT_ERR_NO_MATCH, 19
TT_ERR_NOMEM, 31, 32, 33, 38, 39, 40, 43, 44,

45, 47, 51
TT_ERR_NOMP, 29, 31, 32, 33, 37, 38, 39, 40, 43,

44, 45, 47, 49, 50, 51, 52
TT_ERR_NOTHANDLER, 47, 50
TT_ERR_NUM, 47
TT_ERR_OVERFLOW, 29, 32, 33, 38, 39, 40, 45,

47
TT_ERR_PATH, 31, 81, 82, 83, 84
TT_ERR_POINTER, 29, 32, 34, 37, 38, 39, 43, 44,

45, 49, 50
TT_ERR_PROCID, 32, 33, 38, 39, 40, 43, 44, 45,

47, 49, 51
TT_ERR_PTYPE, 49
TT_ERR_SESSION, 43
TT_ERR_UNIMP, 37, 82, 83
tt_error function, 81
tt_fd, 37
TT_FILE_IN_SESSION, 30, 34, 38, 39
tt_file_join(pathname), 30
tt_file_netfile function, 81, 84
tt_file_quit(pathname), 32
tt_free, 30

X-97Index

tt_free function, 37, 40, 46, 49, 81, 82, 83, 84
tt_host_file_netfile function, 81
tt_host_netfile_file function, 82
tt_message_accept(contract), 36
tt_message_destroy message, 51
tt_message_print, 83
tt_message_receive, 51
tt_message_status, 38, 39
tt_netfile_file function, 81, 82, 83
tt_open, 20
tt_open function, 37, 81, 82, 83
tt_pattern_print, 84
TT_PROCEDURE, 50
tt_ptr_error, 30, 36, 42, 44, 47, 50
tt_ptr_error function, 81, 82, 83
tt_ptype_declare(ptype), 48
tt_release function, 81, 82, 83, 84
TT_SCOPE_NONE, 30, 34, 37, 38
tt_trace_control call, 18
TT_TRACE_SCRIPT environment variable, 21
tt_type_comp , 11
TT_WRN_START_MESSAGE, 36, 51, 52
tt_X_session, 83, 84
ttdt_close, 28
Ttdt_contract_cb, 84
ttdt_contract_cb, 42
Ttdt_contract_cb argument, 34
Ttdt_file_cb, 30, 87
ttdt_file_event, 28, 31
ttdt_file_join, 25, 29, 32
ttdt_file_notice, 31
ttdt_file_quit, 30, 32
ttdt_file_request, 33
TTDT_GET_MODIFIED, 33
ttdt_Get_Modified, 34
ttdt_message_accept, 34
ttdt_message_receive, 34
TTDT_MODIFIED, 29
ttdt_open, 36, 37
ttdt_Revert, 33, 37
TTDT_REVERTED, 29

ttdt_Save, 33, 38
TTDT_SAVED, 29
ttdt_sender_imprint_on, 39
ttdt_session_join, 40
ttdt_session_quit, 42, 43, 44
ttdt_subcontract_manage, 43, 46
TTME_COMPOSE, 46, 48
TTME_DEPOSIT, 46
TTME_DISPLAY, 46, 48
TTME_EDIT, 46, 48
ttmedia_Deposit, 44
ttmedia_load, 45, 46
Ttmedia_load_msg_cb, 89
Ttmedia_load_msg_cb message, 46
Ttmedia_load_pat_cb, 89
Ttmedia_load_pat_cb message, 48
ttmedia_load_reply, 47
Ttmedia_ptype_declare, 91
ttmedia_ptype_declare, 48
ttsession trace, 17
TTSnoop, 15
tttk_block_while, 34, 38, 39, 40, 49
tttk_message_abandon, 50, 52
tttk_message_create, 50
tttk_message_destroy, 51
tttk_message_fail, 51
tttk_message_receive, 51
tttk_message_receive function, 52
tttk_message_reject, 51, 52
tttk_op_string, 52
tttk_patterns_destroy, 36
tttk_Xt_input_handler, 52
tttrace, 18
tttrace command, 18
tttrace function, 20
type information, merging, 12
types mechanism, 11

X
XtRemoveInput functio, 52

